<u>EE C247B/ME C218</u>: Introduction to MEMS Design Lecture 8w: Surface Micromachining II

Lecture 8: Surface Micromachining II

- · Announcements:
- I am on travel today (Thursday); this is a prepared video lecture
- · HW#1 due Tuesday, 2/14 at 10 a.m.
- Handout online: paper titled "Surface Micromachining for Microelectromechanical Systems"
- Handout online: paper titled "Etch Rates for Micromachining—Part II"
-
- · Today:
- Reading: Senturia Chpt. 3, Jaeger Chpt. 11, Handout: "Surface Micromachining for Microelectromechanical Systems"
- · Lecture Topics:
 - ♥ Polysilicon surface micromachining
 - **♥** Stiction
 - ♥ Residual stress
 - ♦ Topography issues
 - Solickel metal surface micromachining
 - \$3D "pop-up" MEMS
 - \$Foundry MEMS: the "MUMPS" process
 - ♦ The Sandia SUMMIT process
- · Last Time:
- · Going through Module 5 on Surface Micromachining

- · Straight or Sloped Sidewalls:
- Often want sloped sidewalls in order to reduce the sharpness of corners

 - \$ Sharp corners concentrate stresses
 - High stress can weaken structures creating a reliabilty concern
 - \$High stress can dissipate energy, lowering Q
- When you want straight sidewalls (e.g., for lateral electrostatic drive), use a hard mask
 - ♥ PR can't last for thick structures
 - ♥ A hard mask suppresses angle transfer

Lecture 8w: Surface Micromachining II

Contact Angle] - governed by a balance of surface tensions usually proporty dependent on the interface between different marientals Example. Hydrophilic Droplet fea liquid-air surface torrion force fle - liquid-solid intenface fa = adherian force Solid-air synface tonsion force Equilibrium: 1) ho isomtal forces cancel and contact pt. fa: forsing fra=fos+flacosoc Tos+ Pros+ Procosoc [for of 87] Relationship between Surface tenrious captured by contact angle.

Lecture 8w: Surface Micromachining II

Lecture 8w: Surface Micromachining II

Liquid	Solid	Contact angle
water	soda-lime glass	
ethanol	lead glass fused quartz	0°
diethyl ether		
carbon tetrachloride		
glycerol		
acetic acid		
water	paraffin wax	107°
	silver	90°
methyl iodide	soda-lime glass	29°
	lead glass	30°
	fused quartz	33°
mercury	soda-lime glass	140°
Some liquid	-solid contact a	ngles ^[5]

EE C247B/ME C218: Introduction to MEMS Design Lecture 8w: Surface Micromachining II

