EE 247B / ME 218 Discussion 2

Kieran Peleaux

Logistics

- Discussion will remain Wednesdays 12 - 1pm
- I will be out the next two weeks - back on Feb. 16 ${ }^{\text {th }}$
- Will be available via Piazza, email, Skype (if need be), etc.
- OH \& discussion will still be held
- Led by Alper Ozgurluk

Thermal/ Electrical Hybrid Circuits

- The circuit problems we've looked at have been mostly thermal
- Inputs have been convenient power sources (like lasers)
- Is this actually useful? How is thermal energy typically coupled into a thermal body/MEMS?

Electrical power through resistive heating!

Power Dissipated in a Resistor

- Remember Ohm's law!

$$
+\quad V
$$

$$
\begin{gathered}
V=I \cdot R, \quad I=\frac{V}{R} \\
P=I \cdot V \\
P=\frac{V^{2}}{R}=I^{2} R
\end{gathered}
$$

R

Most of this energy is thermal!

Reminder: Electrical Resistance

Reminder: Superposition

How do we handle circuits with multiple inputs (i.e., sources)?

1. Pick a source to analyze
2. Suppress (turn off) all other inputs

- Set either V or I to zero
- This means short-circuiting voltage sources \& open-circuiting current sources

3. Find the output of interest for the modified circuit
4. Repeat steps 1-3 for all sources
5. Sum all resultant outputs to find total output due to all sources

Thermal Ckt. Example

- $\quad V_{A}$ represents a step function voltage source (can think of it as switching the voltage on at some time, t)
- Find the time-constant of the circuit
- Find the steady-state temperature on the shuttle if the final value of V_{A} is 1 V

