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& Vertical Stress Gradients
~ UG Berkeley

* Variation of residual stress in the direction of film growth
* Can warp released structures in z-direction
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* Reading: Senturia, Chpt. 8
* Lecture Topics:
% Stress, strain, etc., for isotropic materials
% Thin films: thermal stress, residual stress, and stress
gradients
% Internal dissipation
% MEMS material properties and performance metrics
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& The Poisson Ratio & Shear Stress & Strain (1D)
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o 2D and 3D Considerations

* Important assumption: the
differential volume element
is in static equilibrium — no
net forces or torques (i.e.,
rotational movements)

% Every ¢ must have an
equal ¢ in the opposite Az
direction on the other
side of the element

% For no net torque, the x‘/
shear forces on
different faces must
also be matched as

Stresses acting on a
differential volume element

follows:
Txy = Tyx Txz = Tzx Tyz = Tzy
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o 2D Strain
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* In general, motion consists of
% rigid-body displacement (motion of the center of mass)
% rigid-body rotation (rotation about the center of mass)
% Deformation relative to displacement and rotation

X2, Y2 X3, ¥3
X2, Y2 X3.¥3. Area element
r e | experiences both
D —— '. «— displacement and
\ . deformation
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* Must work with displacement vectors
* Differential definition _ ux(x+ Ax)— u, (x) _ ou

of axial strain: —— &, =—
Ax Ox
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u Isotropic Elasticity in 3D
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* Isotropic = same in all directions

* The complete stress-strain relations for an isotropic elastic
solid in 3D: (i.e., a generalized Hooke's Law)

£, =%[0'x—v(0'y+0'z)] Yy =érxy
8y=%[0'y—v(0'z+0'x)] 7yz_éryz
&, = %[o-z _V(O-x +Gy)] Vo = érzx

Basically, add in off-axis strains from
normal stresses in other directions
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ar As a Function of Temperature
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* Cubic symmetry implies that o is independent of direction
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