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Shear Strain Energy ~  Applying the Principle of Virtual Work

ﬁ}‘ 1
UC Berkeley UC Berkeley

* Basic Procedure:
% Guess the form of the beam deflection under the applied

2 loads
3(EL)Y o d Ty % Vary the parameters in the beam deflection function in
W =—— 3 dx order to minimize:
;1,(’ Wh 0 dx Assumes

Sum strain energles pom'r load

/
Shear Modulus U= ZW Z F u

* See W.C. Albert, "Vibrating Quartz Crystal Beam
Accelerometer,” Proc. ISA Int. Instrumentation Symp., May Dlsp|acemen‘|‘
1982, pp. 33-44 at point load

% Find minima by simply setting derivatives to zero

* See Senturia, pg. 244, for a general expression with
distrubuted surface loads and body forces
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& Example: Tapered Cantilever Beam 5 Strain Energy And Work By F
UC Berkeley, UC Berkeley
* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the U=w, —F-y(L,)
free end of a cantilever with tapered width W(x) o e
Top view of cantilevers W(x) ; 1 L dv 2
w il RUCRLLESSS Wiy = E]1 -(x{ f_J dx  (Bending Energy)
50% taper “e <0 ax
< ke Adjustable W ()i’ \
xX)h 2y
X paramefers: I (x)= L d J =2¢. +6c.x
r’ minimize U - 12 d\‘z 2 37
Y 4 .
) F (x)= c/x\+‘c x3 W(x)=W(l _%) (Using our guess)

* Start by guessing the solution — 2 3 2L, Tip Deflection
% It should satisfy the boundary conditions —
© The strain energy integrals shouldn't be too tedious o EWh 3 J‘ (1-—)2 2¢, +6¢, \) dy—F(e,L> +e..)

« This might not matter much these days, though, since - T
one could just use matlab or mathematica
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o Find ¢, and c; That Minimize U o Minimize U (cont)
UC Berkeley, UC Betkeley
* Minimize U — basically, find the ¢, and c; that brings U * Evaluate the derivatives and set to zero:
closest to zero (which is what it would be if we had guessed
correctly) o _o_(EWR BV,
* The ¢, and c; that minimize U are the ones for which the Je. S e T © e
partial derivatives of U with respective to them are zero: 2
U 5 s [ EWR )
ol oU —=0=| ZEWh’c,—F L+ ¢, IL.°
=0 —=0 dc, 8 ) ‘ 3 °)°
de, dc, '
* Proceed: * Solve the simultaneous equations to get c, and c;:
% First, evaluate the integral to get an expression for U:
5.2 _ ) c*—% FL, c—ﬁ F
U = EWh’ 16( LI+ % ‘; Lt-Fle +el)) 27|13 | Ewn’ o e
)
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& The Virtual Work-Derived Solution .. Comparison With Finite Element Simulation
UC Berkeley,

UC Betkeley
* And the solution:

* Below: ANSYS finite element model with

UF 7 . L = 500 pm Wiese = 20 pm E = 170 GPa
)’(,\'):( = 1[}L —,\'J.\" h=2pm Wy, =10 pm

13EWh®

* Solve for tip deflection and obtain the spring constant:

24F Y5, . TWh
V(L) =] L' k. =F/wl)= 13LTWh
13EWR® | 2 ‘ ‘ 60L,°

2

* Result: (from static
analysis)
%k = 0.471 uN/m
* This matches the
result from energy
minimization to 3
significant figures

* Compare with previous solution for constant-width cantilever
beam (using Euler theory):

_[ 4 5 13% smaller than
V(L) _( EWh? )Lf tapered-width case
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o Need a Better Approximation?

m
UC Berkeley

* Add more terms to the polynomial

* Add other strain energy terms:
% Shear: more significant as the beam gets shorter
% Axial: more significant as deflections become larger

* Both of the above remedies make the math more complex,
so encourage the use of math software, such as
Mathematica, Matlab, or Maple

* Finite element analysis is really just energy minimization

* If this is the case, then why ever use energy minimization
analytically (i.e., by hand)?
% Analytical expressions, even approximate ones, give
insight into parameter dependencies that FEA cannot
% Can compare the importance of different terms
% Should use in tandem with FEA for design
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