CTN 3/17/20 nr whao Marj

CTN 3/17/20

Benning Contribution $k_{2} = k_{cl} | k_{c}^{c} (\frac{1}{k_{c}} + \frac{1}{k_{c}})^{-1} = \frac{k_{c}}{2} = \frac{1}{2} \frac{3E(wh^{2}/l^{2})}{11/2}$ = K1= EW (2) = 0.24 N/m Shetching Contribution $F_{2} \xrightarrow{S} F_{2} = S \operatorname{cn} \theta \xrightarrow{\sim} S \left(\frac{y}{L} \right) = \left(\frac{s}{L} \right) y_{1}$ (assyme small kst displacements) 1 stretching stiffnors Kst: 5= 0-Wh = 0.88 N/m Get the tobe spring constant bending stiffner } porallel -> add! Ktot= 4(Kb+Kst)=4(0.24+0.88)= 4.5 N/m Now, got to resonance freq: fo= 11) Km = 1 14.48 Min = 26.5 kHz ApxL-30 Dota Sheet: fo= 24kH2 driference? S Capacitive transducer -> electricap Δ

CTN 3/17/20

<u>EE C247B/ME C218</u>: Introduction to MEMS Design <u>Lecture 16w</u>: Resonance Frequency

W h $dK = \pm \cdot dm \cdot [N(x,t)]$ dn=p(Whdx) dx Maximum Kihelic Erergy, Kmex: $\mathcal{H}_{max} = \int_{p}^{L} \frac{1}{2} \rho Wh dx \sqrt{2} (x,t) = \int_{0}^{L} \frac{1}{2} \rho Wh \omega^{2} [\hat{\eta}(x)] dx$ To got troghoncy : Kmon = Wmox radians/s 41 = vadian resonance freq. Wmax = maximum potential energy p = density of the structural makerial IN = bean with h: " thickness ight = resonance mode shape 6

CTN 3/17/20

Use the Rayleich-Ritz Method: (energy method)

$$\mathcal{R}_{Unax}^{2} = \mathcal{W}_{Miax}^{2} = \frac{1}{2}kx^{2}$$

Find the timetic energy \rightarrow one place at a time
 $\mathcal{R}_{max}^{2} : \mathcal{R}_{s} + \mathcal{R}_{t} + \mathcal{R}_{b}$
 $shuttle trurs beams$
 $= \frac{1}{2}N_{s}^{2}M_{s} + \frac{1}{2}N_{t}^{2}M_{t} + \frac{1}{2}\int N_{b}^{2}dM_{s}$
 $Velocity of the Shuttle: $N_{s}^{2}W_{0}X_{0}$
 $\Lambda = Maximum displacement$
 $N_{s}^{2} = \frac{1}{2}N_{r}^{2}M_{s}^{2} = \frac{1}{2}W_{0}^{2}X_{0}^{2}M_{s}^{2} = \mathcal{R}_{s}$
 $Velocity of Truss: $N_{t}^{2} = \frac{1}{2}N_{s}^{2} = \frac{1}{2}W_{0}^{2}X_{0}^{2}M_{s}^{2} = \mathcal{R}_{s}$
 $Velocity of Truss: $N_{t}^{2} = \frac{1}{2}N_{s}^{2} = \frac{1}{2}W_{0}^{2}X_{0}^{2}M_{t}^{2} = \mathcal{R}_{s}$
 $M_{t}^{2} = \frac{1}{2}(\frac{1}{2}W_{0}X_{0})^{2}M_{t}^{2} = \frac{1}{4}W_{0}^{2}X_{0}^{2}M_{t}^{2} = \mathcal{R}_{t}$
 $M_{ass} of both trusses$$$$

Plugsing into expression for
$$\mathcal{K}_{b}$$
:
 $\mathcal{K}_{[AB]} = \frac{1}{2} \int_{0}^{L} \frac{\chi}{4} \frac{\partial \omega^{2}}{\partial \omega} \left[3 \left(\frac{\alpha}{2} \right)^{2} - 2 \left(\frac{\alpha}{2} \right)^{3} \right]^{2} dM_{[AB]}$
 $= \frac{\chi^{2}}{2} \int_{0}^{L} \frac{\chi}{4} \frac{\partial \omega^{2}}{\partial \omega} \frac{M_{[AB]}}{\partial \omega} \int_{0}^{L} \left[3 \left(\frac{\alpha}{2} \right)^{2} - 2 \left(\frac{\alpha}{2} \right)^{3} \right]^{2} dy$
 M_{exp} per $M_{[AB]} = 5 \text{ table mass}$
 $\mathcal{K}_{[AB]} = \frac{12}{280} \chi^{2} \omega^{2} M_{[AB]}$
For segment [CD]:
 $\mathcal{N}_{b}(y)|_{[CO]} = \chi_{0} \left[1 - \frac{3}{2} \left(\frac{\alpha}{2} \right)^{2} + \left(\frac{\alpha}{2} \right)^{3} \right] \omega_{0}$
Thus:
 $\mathcal{K}_{[CO]} = \frac{\chi^{2}}{2L} \frac{\omega^{2}}{280} \int_{0}^{L} \left[1 \cdot \frac{3}{2} \left(\frac{\alpha}{2} \right)^{2} + \left(\frac{\alpha}{2} \right)^{2} \right]^{2} dy$
Let $\mathcal{M}_{b} = \frac{1}{2} \frac{1}{2} \frac{\partial \omega^{2}}{\partial \omega} \frac{\partial \omega}{\partial \omega} \frac{\text{stahe moss of beams}}{\text{beams}}$
 $\mathcal{K}_{b} = 4 \mathcal{H}_{[AB]} + 4 \mathcal{H}_{[CP]} = \frac{5}{35} \chi^{2} \omega^{2} M_{b}$

10

Copyright © 2020 Regents of the University of California

CTN 3/17/20

11