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Lecture 20m1: Capacitive Transducers

= Problems With Parallel-Plate C Drive 5
"7 UC Berkeley " UC Berkeley
* Nonlinear voltage-to-force
transfer function e
% Resonance frequency becomes F,, k,,
dependent on parameters (e.g., F
bias voltage V;) <I JOUO\_%
% Output current will also take on d d
nonlinear characteristics as o\ [
Electrostatic Comb Drive

amplitude grows (i.e., as x -
approaches d,) &
% Noise can alias due to o
nonlinearity S
* Range of motion is small 1y
% For larger motion, need larger
V, =
L

gap ... but larger gap weakens
the electrostatic force
% Large motion is often needed
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(e.g.. by gyroscopes,
vibromotors, optical MEMS)
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G Electrostatic Comb Drive 5 Comb-Drive Force Equation (1s' Pass)
1" UC Berkeley " UC Berkeley
~

* Use of comb-capacitive tranducers brings many benefits
% Linearizes voltage-generated input forces
% (Ideally) eliminates dependence of frequency on dc-bias

% Allows a large range of motion ?Y Stator  Rotor
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Comb-Driven Folded Beam Actuator
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Lecture 20m1: Capacitive Transducers

= Lateral Comb-Drive Electrical Stiffness o Typical Drive & Sense Configuration
'~ UC Berkeley " UC Berkeley
~ 2-port Lateral Microresonator NL’ % .ﬁ) He “Q‘tfﬂ‘
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* No (6C/6x) x-dependence — no electrical stiffness: k, = Ol
* Frequency immune to changes in V;, or gap spacing!

37 EE €245: Introduction to MEMS Design LecM 12

EE C245: Introduction to MEMS Design LecM 12 C. Nguyen 11/18/08
37 38
.  Comb-Drive Force Equation (2" Pass) o Comb-Drive Force With
UG Berkeley " Uc Berkeley Ground Plane Correction
" Inour 1% pass, we acc.oun'red for * Finger displacement changes not only the capacitance
% Parallel-plate capacitance between stator and rotor between stator and rotor, but also between these structures
* .. but neglected: and the ground plane — modifies the capacitive energy
% Fringing fields ) .
%, Capacitance to the substrate a LW' _1 dc, oz +l ff—(—il LdC, oy ¥
* All of these capacitors must be included when evaluating the oy 2 de 2 dv _7_ d\

stator (s)

energy expression!

Stator Rotor (itwees)

rotor (r)

[Gary Fedder, Ph.D.,
UC Berkeley, 1994]

C. Nguyen 11/18/08 40

Ground
Plane

EE C245: Introduction to MEMS Design LecM 12

39

ground plane (p)
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Lecture 20m1: Capacitive Transducers

& Capacitance Expressions epit - Comb-Drive Force With
" UC Berkeley - L " UC Berkeley G6round Plane Correction
y Case' V.=Vp =0V *2) * Finger displacement changes not only the capacitance

s depends on whether or not y ™ % ‘ between stator and rotor, but also between these structures
fmgers are engaged and the ground plane — modifies the capacitive energy

region 3 9
il ow’ 1dC_ ., 1dC l dC >
( C' x+C (L-x)] ™ 1 F =——=_—2J7*4 L e N | S
[ Bg ¢ P ( )] region 1 “e dx 2 dx 2 dx 7 2 dx ( ’ ' )
C =NC" ;k\ Capacitance per ¢, M
— unit length r 2
rotor (r) ( - W,

Region 2 Region 3

[6ary Fedder, Ph.D., UC Berkeley 1994] ground plane (p) [6ary Fedder, Ph.D., UC Berkeley, 1994]
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P Simulate to Get Capacitors — Force 5 Vertical Force (Levitation)
17 UC Berkeley " UC Berkeley
* Below: 2D finite element simulation i
50 — T T T T T T 50 7.3’
rotor i [ Stati % Statlonary
sro —P* Gt Cue T Eseé?rré%rg Electrode
\ -
wl L7 deo -
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sr =0 q3s =
\ e Ve
Eoor N Co ... 1% = - N\
R I 4 L I LY e
325——--’——“-——-—6:”‘— ——————— = 25 g
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S| B2k ™, e 20 8
FL= 3G | | N\ s v
. 8 g
S 3 ow' _1dC, , 1dC, , 1dC,
o 1y LGy NGy
20-40% reduction of F, , 0z 2 dz 2 dz 2 Z
1 d( L.+ C )
Ut *For V, = OV (as shown): F, =— Ny — 2 "2 \/2
Vertical displacement of rotor, Az[um] 2 dZ
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o Simulated Levitation Force

|
" UC Berkeley

* Below: simulated vertical force F, vs. z at
different V,'s [f/ Bill Tang Ph.D., UCB, 1990]
% See that F, is roughly proportional to -z for z
less than z, — it's like an electrical stiffness
that adds to the mechanical
stiffness
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Equilibrium levitation, zg Stiffness
/ 3 4
1 1 -
i 2 z
Vertical levitation [pum]
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5 Suppressing Levitation
~UC Berkeley,
1 ! i
A ;
z “ I / -
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Statonary /N L L L\ [/ X7 Stationary
Electrode el < Electrode

1

1

* Pattern ground plane polysilicon into differentially excited
electrodes to minimize field lines terminating on top of comb

* Penalty: x-axis force is reduced
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5 Vertical Resonance Frequency
- UC Berkeley,
Vertical
resonance\)& = kz + ke where k = (&)Vz
frequency k ¢ |z
o)z/wxo zo z o
Vertical Lateral

resonance = pesonance

frequency at  frequency
Ve = OV

* Signs of electrical
stiffnesses in MEMS:
Comb (x-axis) »> k., = O
Comb (z-axis) —> k, > 0
Parallel Plate — k, < O

"

Applied voltage
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. Force of Comb-Drive vs. Parallel-Plate

‘.

T
; UC Berkeley
X * Comb drive (x-direction)
%V1=V2=V5=1V
Y
h
Fe,x = liVsz
L 2 2d,
3 * Differential Parallel-Plate
‘ é (y-direction)
v, —= LV, =0V, V, = 1V
1 ¢hL
Gap = d, = 1 um ) 4
Thickness = h = 2 ym 2 d, Parallel-plate
Finger Length = L, = 100 enerates a
1 ehl, 9
pum = much larger
Finger Overlap = Ly= 75 um F,, 2 d; @ force; but at
T 1eh the cost of
Fox i v’ linearity
2d,
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