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Lecture Outline

• Reading: Senturia, Chpt. 14, Chpt. 16, Chpt. 21

• Lecture Topics:
Gyroscopes
Gyro Circuit Modeling
Minimum Detectable Signal (MDS)

Noise
Angle Random Walk (ARW)
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Gyroscopes
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Classic Spinning Gyroscope

• A gyroscope measures rotation rate, which then gives 
orientation  very important, of course, for navigation

• Principle of operation based on conservation of momentum

• Example: classic spinning gyroscope

Rotor will preserve its angular Rotor will preserve its angular 
momentum (i.e., will maintain 

its axis of spin) despite 
rotation of its gimbled chassis
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Vibratory Gyroscopes

• Generate momentum by vibrating structures

• Again, conservation of momentum leads to mechanisms for 
measuring rotation rate and orientation

• Example: vibrating mass in a rotating frame

Mass at rest

y-displaced mass

Driven into 
vibration 
along the 
y-axis
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Principle of Operation

• Tuning Fork Gyroscope:
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Basic Vibratory Gyroscope Operation
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Principle of Operation
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Basic Vibratory Gyroscope Operation
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Principle of Operation

• Tuning Fork Gyroscope:
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Vibratory Gyroscope Performance

• To maximize the output signal x, 
need:
Large sense-axis mass
Small sense-axis stiffness
 (Above together mean low 

resonance frequency)
Large drive amplitude for large 

driven velocity (so use comb-
drive)

If can match drive freq. to 
sense freq., then can amplify 
output by Q times
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7 8



3

EE 247B/ME 218: Introduction to MEMS Design
Lecture 22m1: Gyros, Noise & MDS

CTN 4/16/20

Copyright © 2020 Regents of the University of California

EE C245: Introduction to MEMS Design LecM 15 C. Nguyen  11/18/08  9

MEMS-Based Gyroscopes

Vibrating Ring Gyroscope

[Najafi, Michigan]

Laser

Polarizer

Rb/Xe Cell

Photodiode3.2 mm

1 mm

1 mm

t

Tuning Fork Gyroscope 
[Draper Labs.]

Tuning Fork Gyroscope 
[Ayazi, GA Tech.]

Nuclear 
Magnetic 
Resonance 

Gyro [NIST]
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• In-plane drive and sense modes pick up 
z-axis rotations

•Mode-matching for maximum output 
sensitivity

• From [Zaman, Ayazi, et al, MEMS’06]

MEMS-Based Tuning Fork Gyroscope
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[Zaman, Ayazi, et al, MEMS’06]
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MEMS-Based Tuning Fork Gyroscope
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• Drive and sense axes must be stable or at least track one 
another to avoid output drift
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MEMS-Based Tuning Fork Gyroscope
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Mode Matching for Higher Resolution

• For higher resolution, can try to match drive and sense axis 
resonance frequencies and benefit from Q amplification
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Issue: Zero Rate Bias Error

• Imbalances in the system can lead to zero rate bias error

Drive imbalance 
 off-axis motion 
of the proof mass

Output signal in 
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Coriolis acceleration
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Nuclear Magnetic Res. Gyroscope

• The ultimate in miniaturized spinning gyroscopes?
from CSAC, we may now have the technology to do this

Atoms Aligned
Nuclear Spins
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Polarizer

Rb/Xe Cell
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3.2 mm
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Soln: Spin polarize Xe129 nuclei by 
first polarizing e- of Rb87 (a la 

CSAC), then allowing spin exchange

Better if this is a noble gas nucleus 
(rather than e-), since nuclei are 

heavier  less susceptible to B field

Challenge: suppressing 
the effects of B field
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[Zaman, Ayazi, et al, MEMS’06]
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Determining Sensor Resolution
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