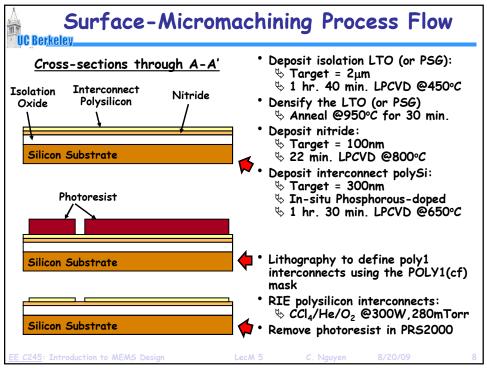
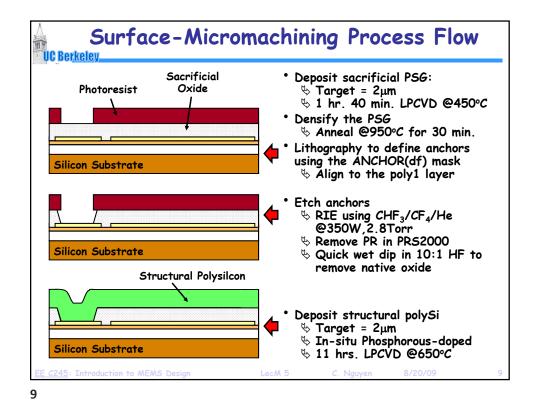
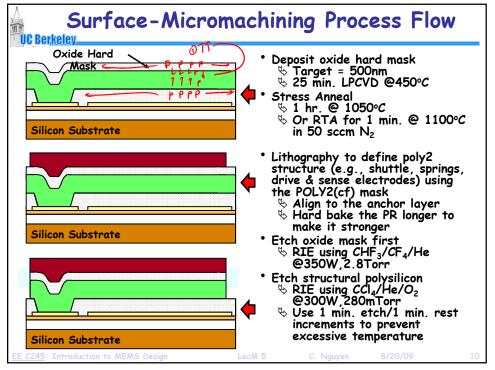
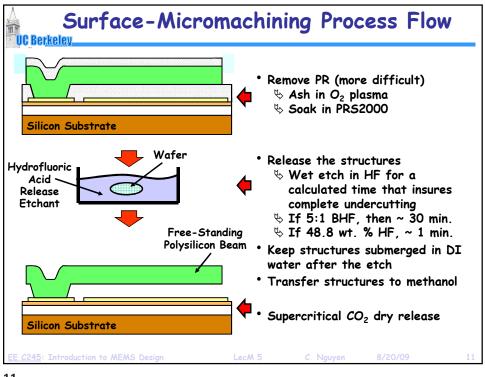
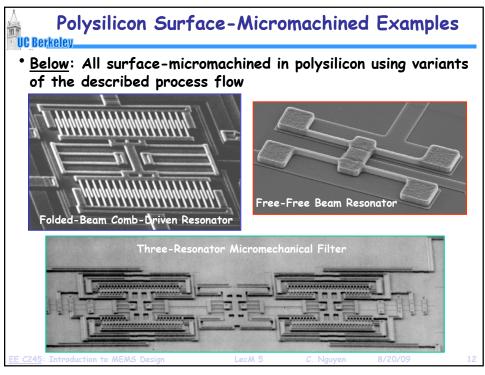

Polysilicon Surfac	ce-Micromachining
Nitride Sacrificial Isolation Interconnect Oxide Polysilcon Oxide Polysilicon Silicon Substrate	 Uses IC fabrication instrumentation exclusively <u>Variations</u>: sacrificial layer thickness, fine- vs. large- grained polysilicon, in situ vs. POCL₃-doping
Hydrofluoric Acid Release Etchant Wafer Free- Standing Polysilicon Beam	
Silicon Substrate EE C245: Introduction to MEMS Design Leck	300 kHz Folded-Beam Micromechanical Resonator
3	· · · · · · · · · · · · · · · · · · ·

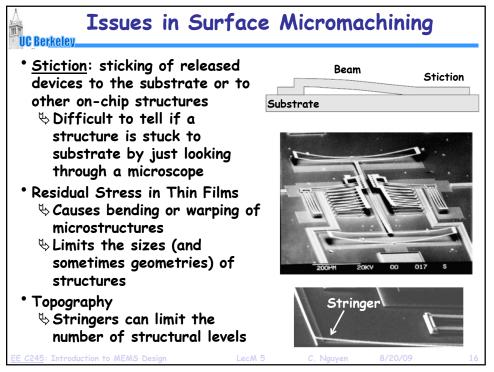

Polysilicon EE C245: Introduction to MEMS Design Leck 5 C. Nguyen 8/20/09 4

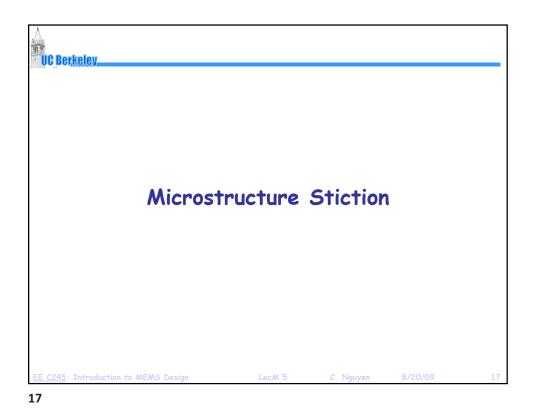


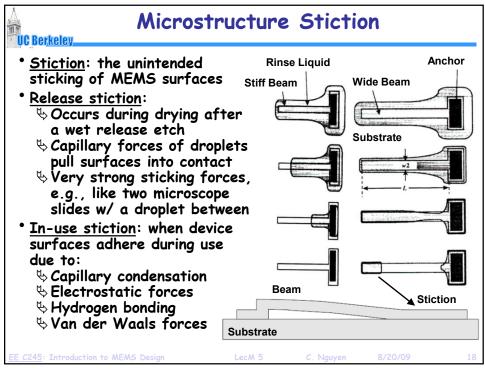


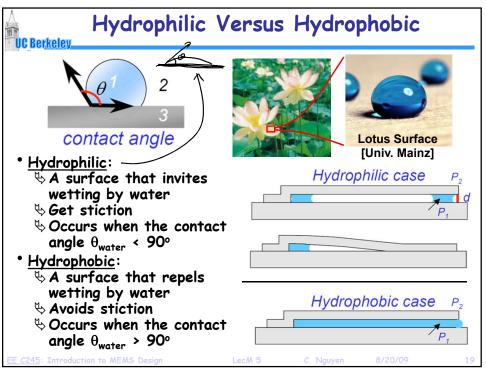

Copyright @ 2020 Regents of the University of California

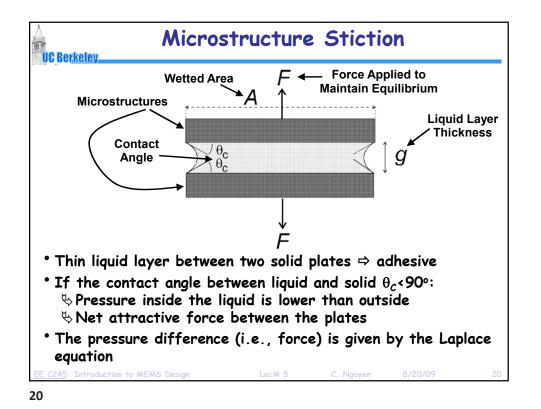


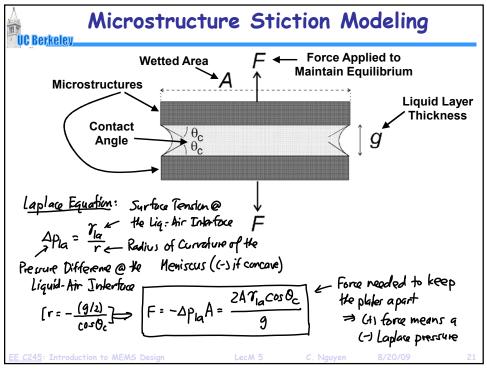


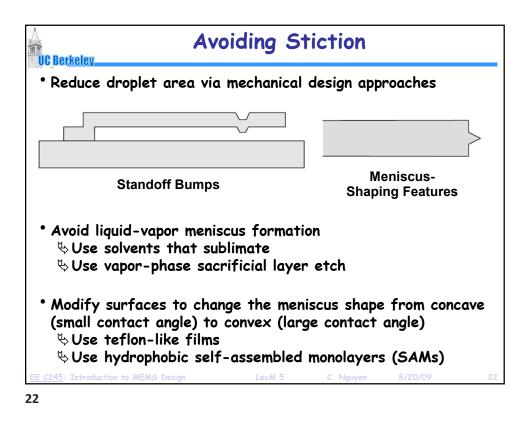


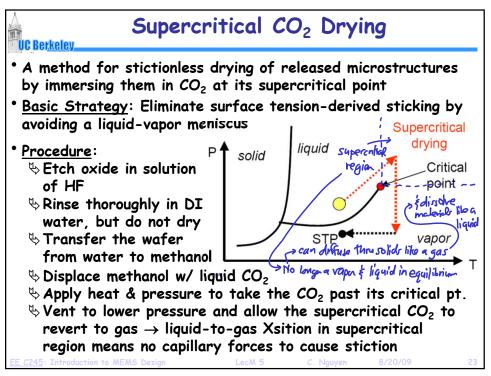

Structural Material	Sacrificial Material	Etchant
Poly-Si	SiO ₂ , PSG, LTO	HF, BHF
Al	Photoresist	O ₂ plasma
SiO ₂	Poly-Si	XeF ₂
AI	Si	TMAH, XeF2
Poly-SiGe	Poly-Ge	H ₂ O ₂ , hot H ₂ O
generally have a fin Sex: concentrated ⊢ Polysilicon E.R. Silicon nitride E Wet thermal Sic Annealed PSG ~	~ 0 .R. ~ 1-14 nm/min D ₂ ~ 1.8-2.3 µm/min	rial

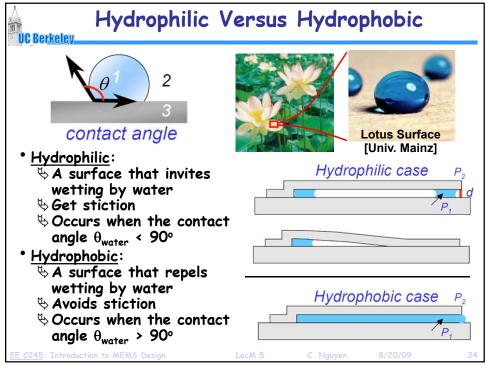

		Wet-Etch	Rates fo	Microm	chining	and IC	Processing	(Å/min)				_					
The top etch rate was measured by the authors with fres	h solutions, etc. Th	e center and	bottom	values are	the low a	nd high	etch rates o	bserved by			ters in our	lab under k	ess caref	ally control	ciled con-	fitions.	
ETCHANT						-			MAT	FERIAL			-		-		
EQUIPMENT CONDITIONS	TARGET MATERIAL	SC Si <100>	Poly a*	Poly undop	Wet Ox	Dry Ox	LTO undop	PSG unani	PSG annki	Stoic Nitrid	Low-σ Nitrid	AV 2% Si	Sput Tung	Sput	Sput TJ/W	0C0 820PR	Olin HntPF
Concentrated HF (49%) Wet Sink Room Temperature	Silicon oxides		0		23k 18k 23k	F	>14k	F	36k	140	52 30 52	42 0 42	<50	Ŀ		P 0	PO
Non resperate 10:1 HF Wet Sink Room Temperature	Silicon oxides	·	7	0	230	230	340	15k	4700	11	3	2500 2500 12k	0	llk	<70	0	6
Koon Temperature 25:1 HF Wet Sink Room Temperature	Silicon oxides		0	0	97	95	150	w	1500	6	1	w	0	•		0	0
Koon temperature 5:1 BHF Wet Sink Room Temperature	Silicon oxides		9	2	1000 900 1080	1000	1200	6800	4400 3500 4400	9	4 3 4	1400	<20 0.25 20	F	1000	0	0
Room remperature Phospheric Acid (85%) Heated Bath with Reflux 166°C	Silicon nitrides		7	•	0.7	0.8	<1	37	24 9 24	28 28 42	19 19 42	9800		•		550	390
Silicon Bachant (126 HNO ₃ : 60 H ₂ O : 5 NH ₂ F) Wet Sink Room Temperature	Silicon	1500	3100 1200 6000	1000	87	w	110	4000	1700	2	. 3	4000	130	3000		0	6
KOH (1 KOH : 2 H ₂ O by weight) Heated Stirred Bath 80°C	<100> Silicon	14k	>10k	F	77 41 77		94	w	380	0	0	F	0	•		F	I
Aluminum Eichant Type A (16 H ₂ PO ₄ : 1 HNO ₅ : 1 HAc : 2 H ₂ O) Hested Bath SOVC	Alamnium		<10	4	0	0	0	•	<10	0	2	6600 2600 6600		0		0	0
Titanium Eathant (20 H ₂ O : 1 H ₂ O ₂ : 1 HF) Wet Sink Room Temperature	Titunium		12		120	w	w	w	2100	8	4	w	0 0 <10	8800		0	0
H ₂ O ₅ (39%) Wet Sink Room Temperature	Tangsten	-	0	0	0	0	0	0	0	0	0	<20	190 190 1000	0	60 60 150	4	0
Room Letoperature Piranha (-50 H_SO_4: 1 H_SO_3) Heated Bath 120°C	Cleaning off metals and organics		0	0	0	0	0		0	0	0	1800		2400		F	3
Actione Wet Sink Room Temperature	Photoresist		0	0	0	0	0	•	0	0	0	0		0		>49k	>394

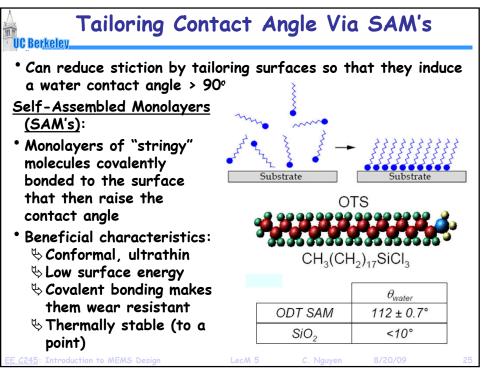

For some popular films:								
Material	Wet etchant	Etch rate [nm/min]	Dry etchant	Etch rate [nm/min]				
olysilicon	HNO ₃ :H ₂ O: NH ₄ F	120-600	SF ₆ + He	170-920				
ilicon itride	H ₃ PO ₄	5	SF ₆	150-250				
Silicon lioxide	HF	20-2000	CHF ₃ + O ₂	50-150				
luminum	H ₃ PO ₄ :HNO ₃ : CH ₃ COOH	660	Cl ₂ + SiCl ₄	100-150				
hotoresist	Acetone	>4000	0 ₂	35-3500				
old	KI	40	n/a	n/a				

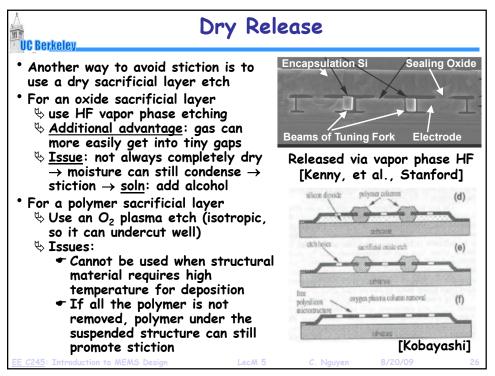


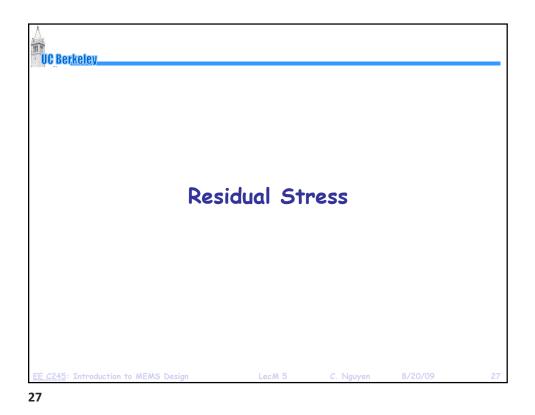


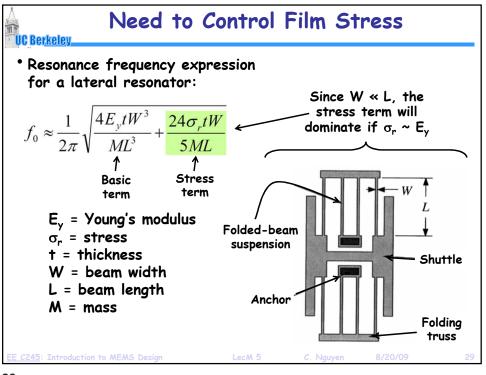


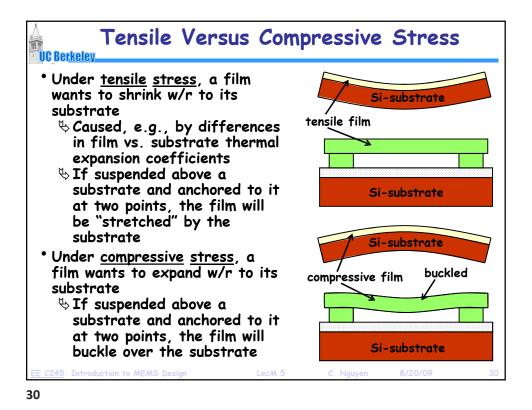


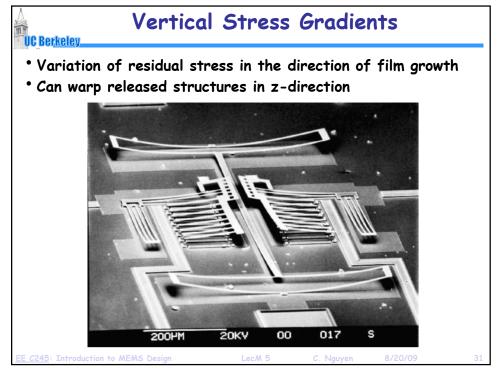


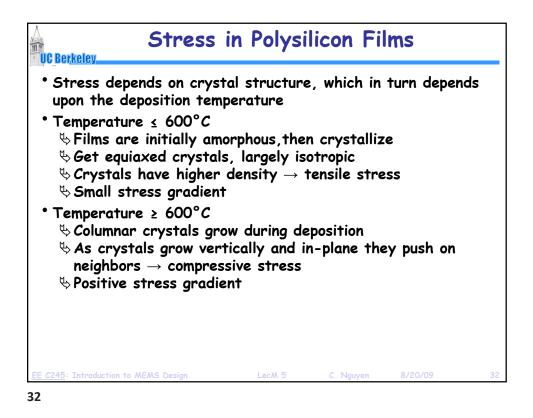


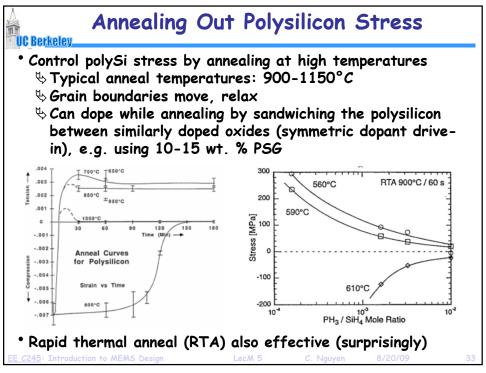


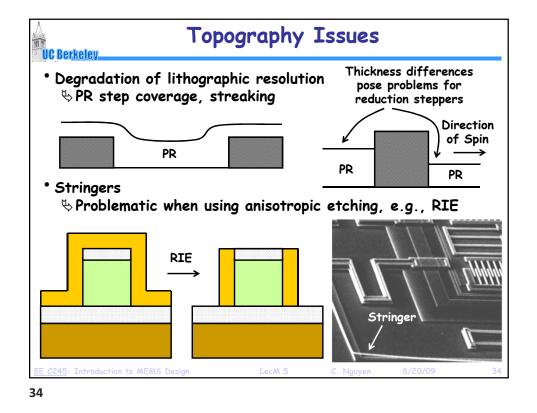


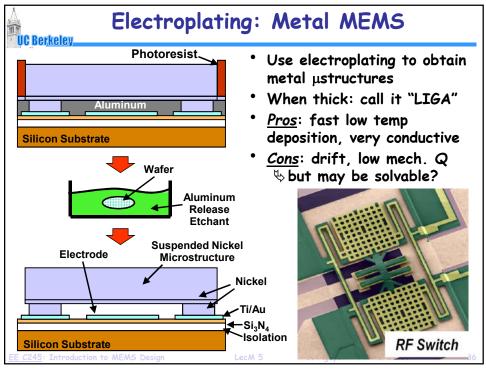


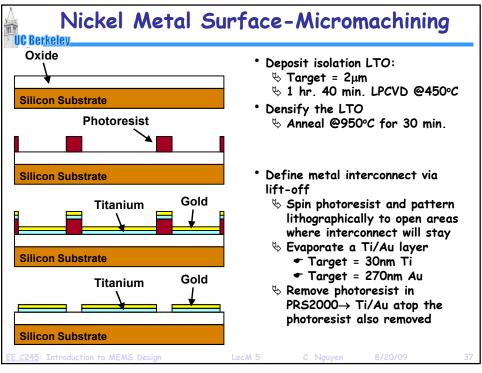


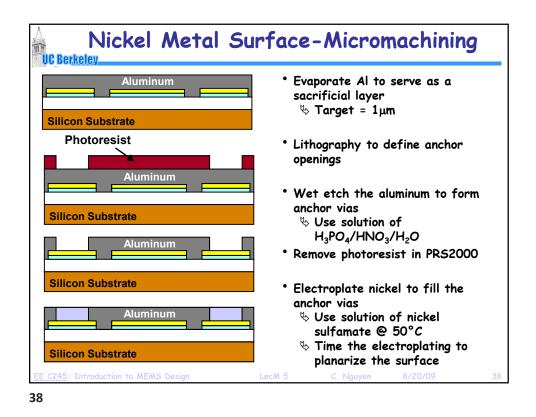

Residual Stress in Thin Films UC Berkeley Cu Top Electrode • After release, poorly designed bending microstructures might buckle, bend, or warp \rightarrow often caused by residual film stress • Origins of residual stress, σ **GSG** Pads Srowth processes Lateral Spring Cu Bottom GND Non-equilibrium deposition **Tunable Dielectric Capacitor** Grain morphology change [Yoon, et al., U. Michigan] • Gas entrapment Buckled - Doping **Double-Ended Shermal** stresses **Tuning Fork** Thermal expansion mismatch of materials \rightarrow introduce stress during cool-down after deposition Annealing



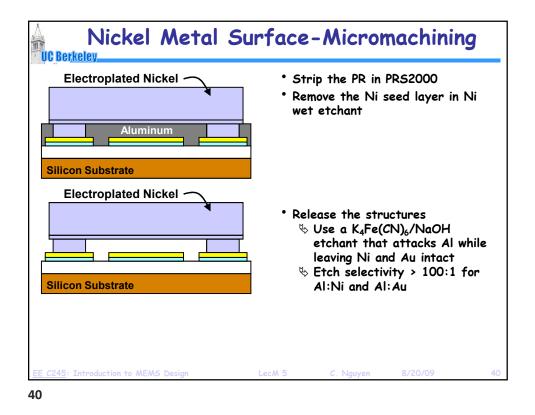


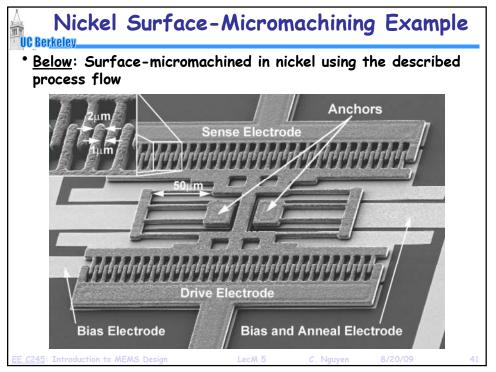


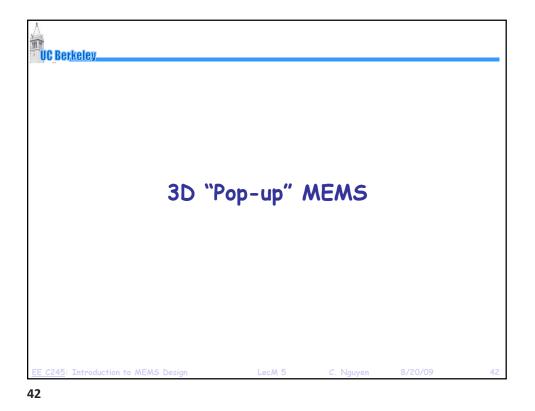


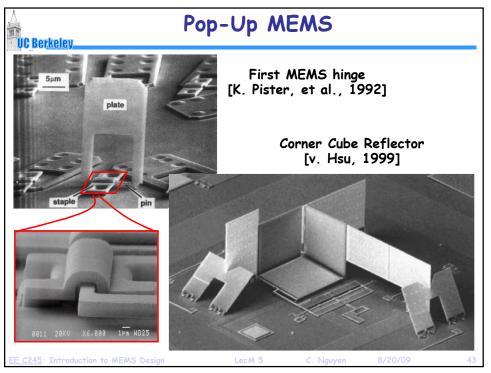


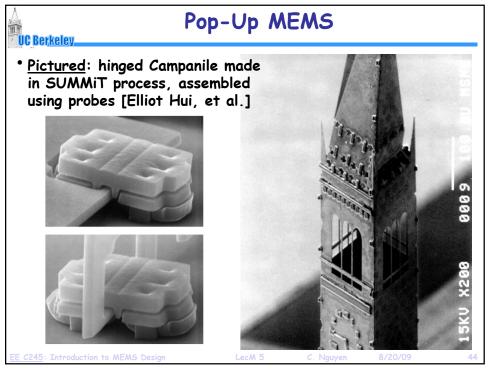
<u>EE 247B/ME218</u>: Introduction to MEMS Design <u>Module 5</u>: Surface Micromachining

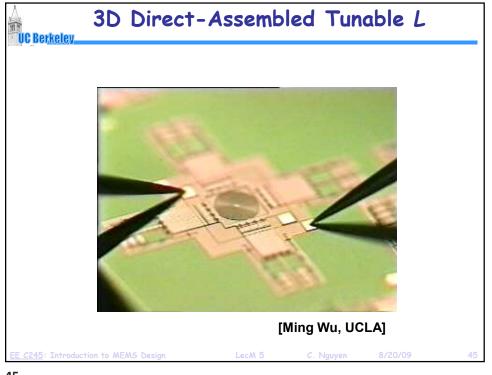


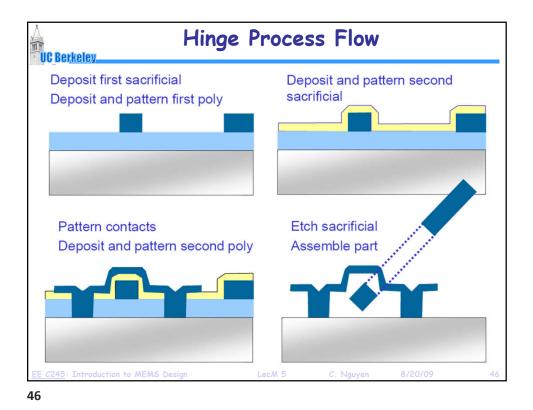


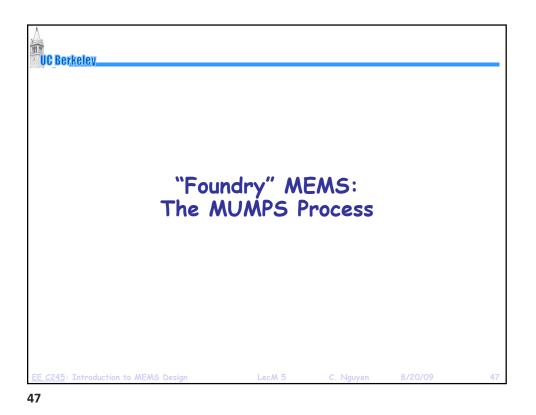


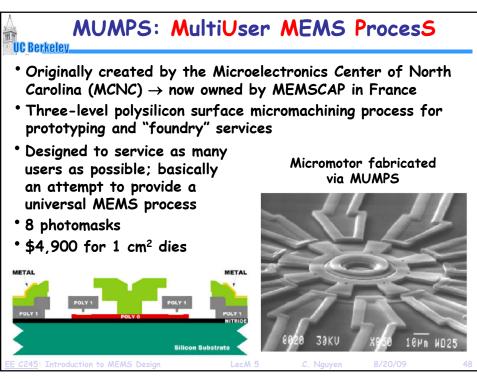


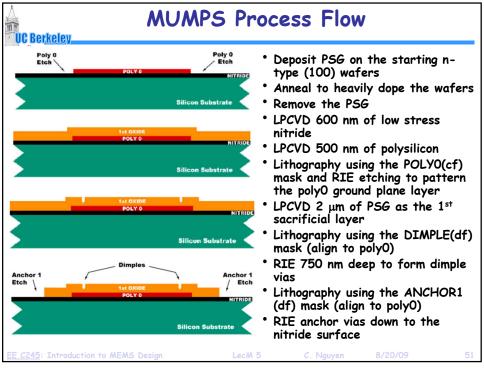

Nickel Metal Su	rface-Micromachining
Nickel seed layer	 Evaporate a thin film of nickel to serve as a seed layer for subsequent Ni electroplating Target = 20nm
Silicon Substrate Photoresist Aluminum Silicon Substrate Electroplated Nickel	 Form a photoresist mold for subsequent electroplating Spin 6 um-thick AZ 9260 photoresist Lithographically pattern the photoresist to delineate areas where nickel structures are to be formed Electroplate nickel structural material through the PR mold Use a solution of nickel sulfamate @ 50°C
Aluminum Silicon Substrate	Cathode-to-anode current density ~ 2.5 mA/cm ²
EE C245: Introduction to MEMS Design	LecM 5 C. Nguyen 8/20/09 39

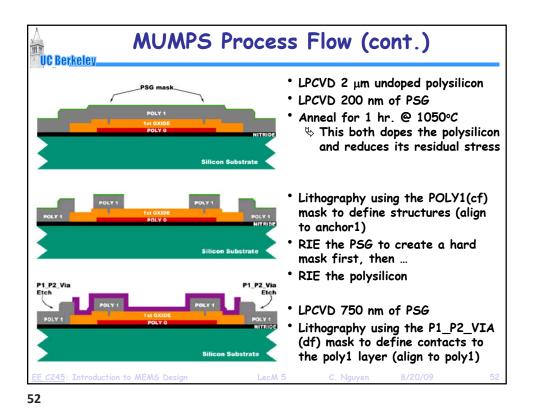


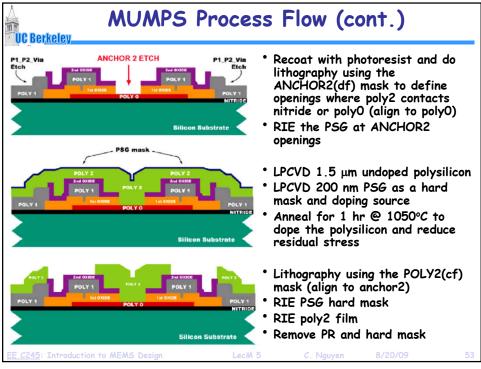


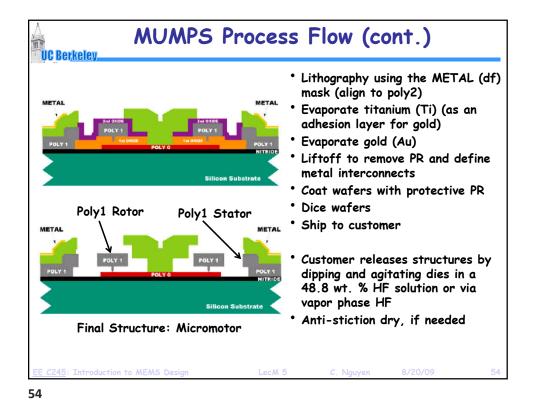


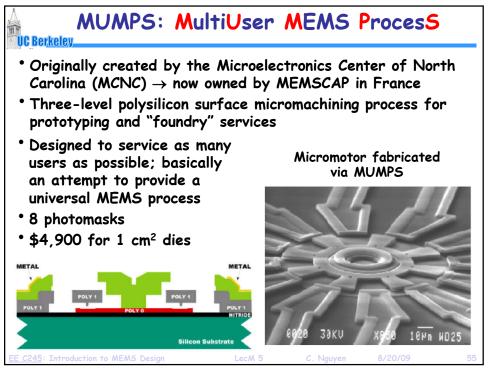


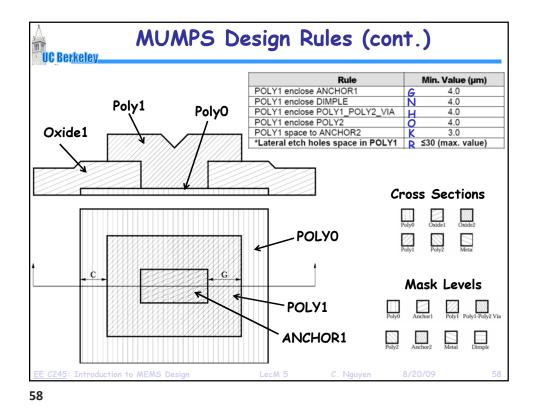







Material Layer Thickness (µm) Lithography Level I Nitride 0.6 Poly 0 0.5 POLY0 (HOLE0)	TRIDE
POLY 1 POLY 1 POLY 1 1st 0x00t POLY 0 1st 0x00t POLY 0 Nilicon Substrate Material Layer Thickness (µm) Lithography Level I Nitride 0.6 Poly 0 0.5 POLY0 (HOLE0)	and the second se
Material Layer Thickness (µm) Lithography Level I Nitride 0.6 Poly 0 0.5 POLY0 (HOLE0)	
Nitride 0.6 Poly 0 0.5 POLY0 (HOLE0)	R
Poly 0 0.5 POLY0 (HOLE0)	lame
ANCHOR1	
Poly 1 2.0 POLY1 (HOLE1)	
Second Oxide 0.75 POLY1_POLY2_VIA ANCHOR2	
Poly 2 1.5 POLY2 (HOLE2)	
Metal 0.5 METAL (HOLEM)	

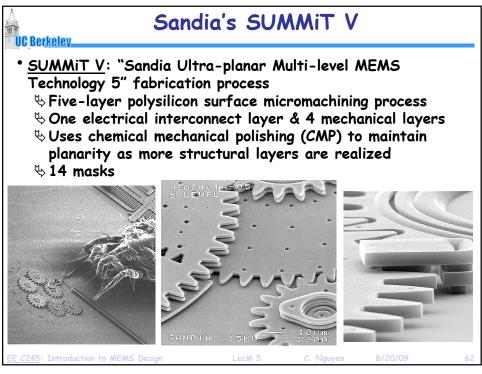

Mnemonic level name	Field type	Purpose				
OLY0	light	pattern ground plane				
NCHOR1	dark	open holes for Poly 1 to Nitride or Poly 0 connection				
MPLE	dark	create dimples/bushings for Poly 1				
OLY1	light	pattern Poly 1				
OLY1_POLY2_VIA	dark	open holes for Poly 1 to Poly 2 connection				
NCHOR2	dark	open holes for Poly 2 to Nitride or Poly 0 connection				
OLY2	light	pattern Poly 2				
ETAL	light	pattern Metal				
OLE0	dark	provide holes for POLY0				
OLE1	dark	provide release holes for POLY1				
DLE2	dark	provide release holes for POLY2				
OLEM	dark	provide release holes in METAL				
features tl	flexibili lear) field nat will st	a masks for more ty & ease of release <u>I (cf)</u> : in layout, boxes represent ay through fabrication ayout, boxes represent holes to be				

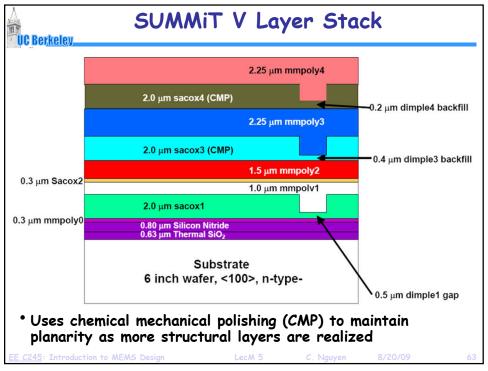


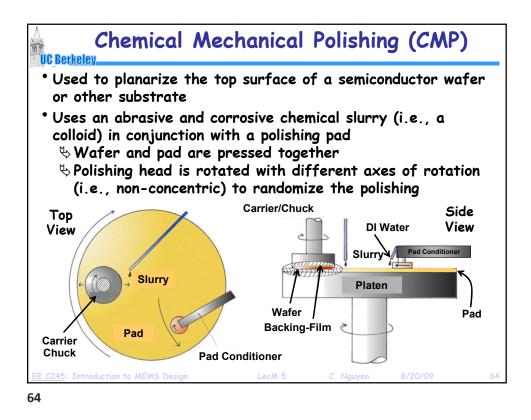
POLYMUMPS A UC Berkeley • Minimum feature siz	e		
Determined by M alignment precisio		hographic res	solution and
Violations result i or fused features	n missing (una	nchored), und	er/oversized,
♥Use minimum feat		absolutely ne	ecessary
	Nominal [µm]	Min Feature [µm]	Min Spacing [µm]
POLYO, POLY1, POLY2	3	2	2
POLY1_POLY2_VIA	3	2	2
ANCHOR1, ANCHOR2	3	3	2
DIMPLE	3	2	3
METAL	3	3	3
HOLE1, HOLE2	4	3	3
HOLEM	5	4	4
	LecM 5	C. Nguyen	

MUMPS (Design Ri	ules (c	ont.)
Rule	Rule Letter	Figure #	Min. Value (µm)
POLY0 space to ANCHOR1	A	2.5	4.0
POLY0 enclose ANCHOR1	В	2.5	4.0
POLY0 enclose POLY1	С	2.6	4.0
POLY0 enclose POLY2	D	2.7	5.0
POLY0 enclose ANCHOR2	E	2.8	5.0
POLY0 space to ANCHOR2	F	2.8	5.0
Oxide1		lyO	Cross Sections Poly0 Diside1 Diside2 Poly1 Disy2 Distance
		HOR1	Mask Levels Poly0 Anchor1 Poly1 Poly1-Poly2 Via Poly2 Anchor2 Metal Dimple
EE C245: Introduction to MEMS Design	LecM 5	C. Nguyen	8/20/09 57

Copyright @ 2020 Regents of the University of California


MUMPS	Design R	Rules (cont.)
Rule	Rule Letter	Figure #	Min. Value (µm)
POLY0 space to ANCHOR1	A	2.5	4.0
POLY0 enclose ANCHOR1	В	2.5	4.0
POLY0 enclose POLY1	C	2.6	4.0
POLY0 enclose POLY2	D	2.7	5.0
POLY0 enclose ANCHOR2	E	2.8	5.0
POLY0 space to ANCHOR2	F	2.8	5.0
Rule	Rule Lette	r Figure #	f Min. Value (μm)
POLY1 enclose ANCHOR1	G	2.6	4.0
POLY1 enclose DIMPLE	N	2.13	4.0
POLY1 enclose POLY1_POLY2_VIA	H	2.9, 2.11	4.0
POLY1 enclose POLY2	0	2.14	4.0
POLY1 space to ANCHOR2	K	2.11	3.0
*Lateral etch holes space in POLY1	R	2.15	≤30 (max. value)
Rule	Rule Lette	r Figure #	t Min. Value (μm)
POLY2 enclose ANCHOR2	J	2.7.2.10	
POLY2 enclose POLY1 POLY2 VIA	L	2.9	4.0
POLY2 cut-in POLY1	P	2.14	5.0
POLY2 cut-out POLY1	Q	2.14	4.0
POLY2 enclose METAL	M	2.12	3.0
POLY2 space to POLY1	I	2.10	3.0
HOLE2 enclose HOLE1	Т	2.16	2.0
HOLEM enclose HOLE2	U	2.16	2.0
*Lateral etch holes space in POLY2	S	2.15	≤30 (max. value)
C245: Introduction to MEMS Design	LecM 5	C. Nguyer	n 8/20/09




	Feature	Spacing				
-	2	2				
ANCHOR1			4/B/2.5	4/A/2.5		
POLY1			4/C/2.6			
ANCHOR2			5/E/2.8	5/F/2.8		
POLY2			5/D/2.7			
-	2	2/2.5 ²				
POLY0						
ANCHOR1			4/G/2.6			
ANCHOR2				3/K/2.11		
POLY2			4/0/2.14			
DIMPLE			4/N/2.13			
POLY1_POLY2_VIA			4/H/2.9			
	2	2/2.5 ²				
POLY0						
POLY1				3/1/2.10	5/P/2.14	4/Q/2.14
VIA			4/L/2.9			
ANCHOR2			5/J/2.7			
METAL			3/M/2.12			
HOLE2			2/U/2.16			
HOLE1			2/T/2.16			
	POLY1 ANCHOR2 POLY2 POLY0 ANCHOR1 ANCHOR2 POLY2 DIMPLE POLY1_POLY2_VIA POLY1 POLY0 POLY1 VIA ANCHOR2 METAL HOLE2	POLY1 ANCHOR2 POLY2 - 2 POLY0 ANCHOR1 ANCHOR2 POLY2 DIMPLE POLY1_POLY2_VIA - 2 POLY1 VIA ANCHOR2 METAL HOLE2	POLY1 ANCHOR2 POLY2 - 2 2/2.5 ² POLY0 ANCHOR1 ANCHOR2 POLY2 DIMPLE POLY1_POLY2_VIA - 2 2/2.5 ² POLY0 POLY1 VIA ANCHOR2 METAL HOLE2	POLY1 4/C/2.6 ANCHOR2 5/E/2.8 POLY2 5/D/2.7 - 2 2 / 2.5 ² POLY0 4/G/2.6 ANCHOR1 4/G/2.6 ANCHOR2 4/O/2.14 DIMPLE 4/IV/2.13 POLY1 4/H/2.9 - 2 2 / 2.5 ² POLY1 4/H/2.9 - 2 2 / 2.5 ² POLY1 4/H/2.9 4/U/2.14 POLY1 5/D/1 4/U/2.14 POLY1 5/D/1 5/D/1 VIA 4/L/2.9 5/J/2.7 ANCHOR2 5/J/2.7 5/J/2.7 METAL 3/M/2.12 10/2.14 HOLE2 2/U/2.16 10/2.7	POLY1 4/C/2.6 ANCHOR2 5/E/2.8 POLY2 5/D/2.7 - 2 POLY0 - ANCHOR1 4/G/2.6 ANCHOR2 3/K/2.11 POLY0 - ANCHOR1 4/G/2.6 ANCHOR2 3/K/2.11 POLY2 4/0/2.14 DIMPLE 4/H/2.9 - 2 POLY1_POLY2_VIA 4/H/2.9 - 2 POLY1 3/I/2.10 VIA 4/L/2.9 ANCHOR2 5/J/2.7 METAL 3/M/2.12 HOLE2 2/1/2.16	POLY1 4/C/2.6 ANCHOR2 5/E/2.8 POLY2 5/E/2.8 - 2 2 2 / 2.5 ² POLY0 4/G/2.6 ANCHOR1 4/G/2.6 ANCHOR2 3/K/2.11 POLY0 3/K/2.11 POLY2 4/0/2.14 DIMPLE 4/H/2.9 - 2 POLY1_POLY2_VIA 4/H/2.9 - 2 POLY1 3/I/2.10 VIA 4/L/2.9 ANCHOR2 5/J/2.7 METAL 3/I/2.12 HOLE2 2/U/2.16

