EE C247B/ME C218: Introduction to MEMS Design

Module 7: Mechanics of Materials

EE C247B - ME C218 Introduction to MEMS Design Spring 2020

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 7: Mechanics of Materials

EE C245: Introduction to MEMS Design

LecM 7

C. Nauve

9/28/07

1

Outline

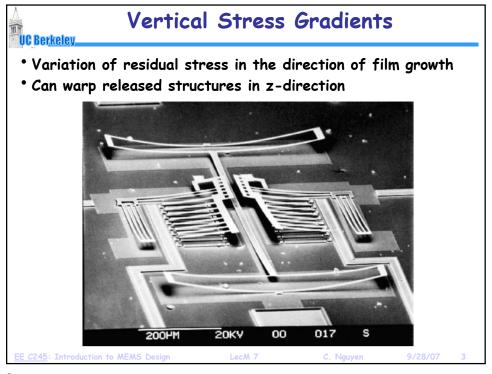
- Reading: Senturia, Chpt. 8
- Lecture Topics:
 - \$Stress, strain, etc., for isotropic materials
 - Thin films: thermal stress, residual stress, and stress gradients
 - ♦ Internal dissipation
 - MEMS material properties and performance metrics

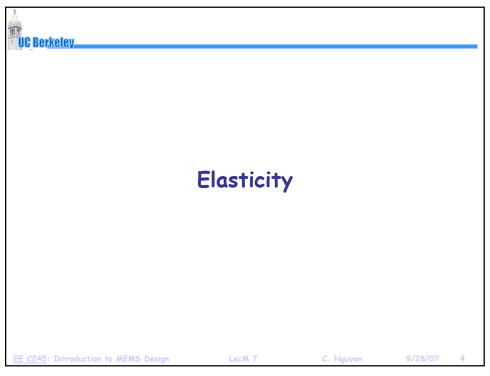
EE C245: Introduction to MEMS Design

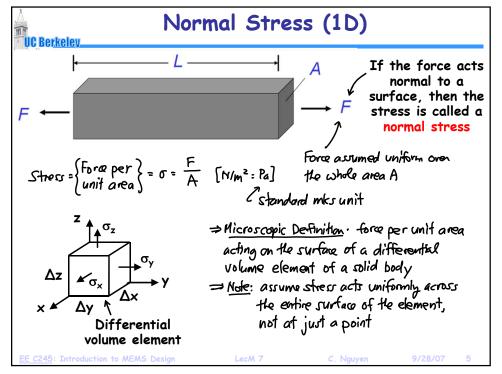
LecM 7

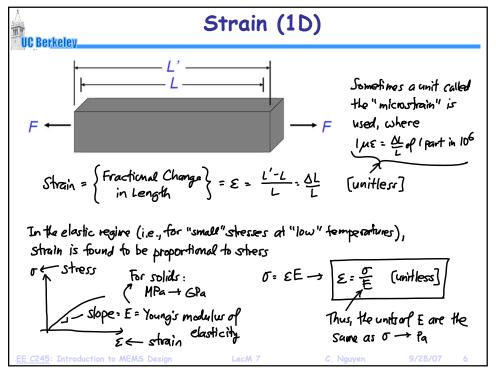
C. Nguyen

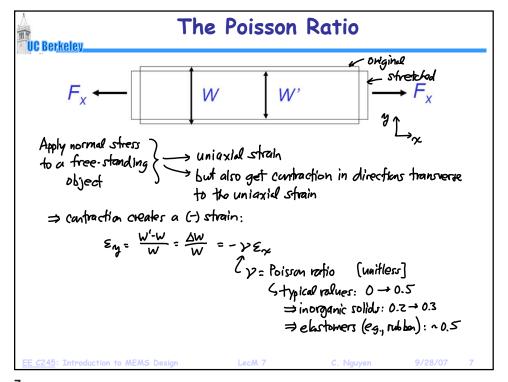
9/28/07



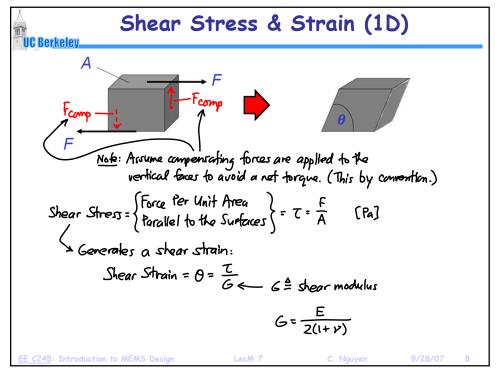


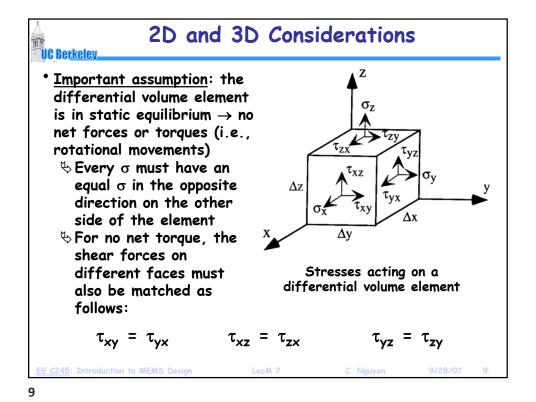




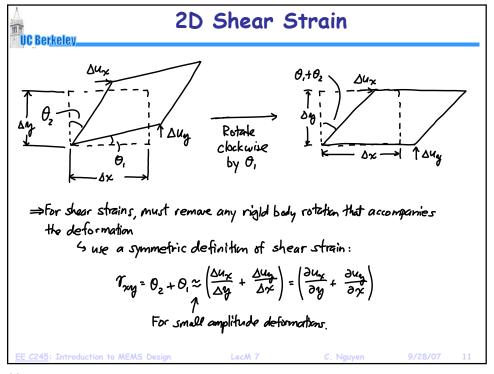


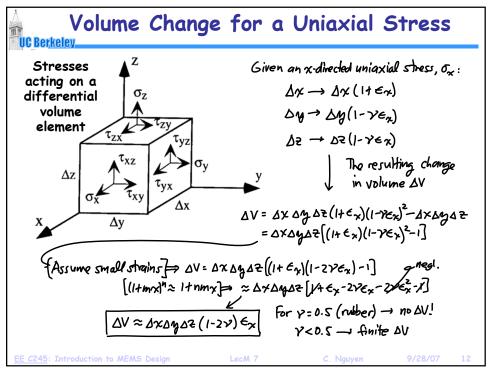
/





2D Strain UC Berkelev • In general, motion consists of ♥ rigid-body displacement (motion of the center of mass) ⋄ rigid-body rotation (rotation about the center of mass) ♦ Deformation relative to displacement and rotation X3, Y3 x_2, y_2 Area element experiences both displacement and deformation x4, y4 Must work with displacement vectors Differential definition $\frac{u_x(x+\Delta x)-u_x(x)}{=}$ of axial strain: $\longrightarrow \mathcal{E}_{x}$





Module 7: Mechanics of Materials

Isotropic Elasticity in 3D

UC Berkeley

- Isotropic = same in all directions
- The complete stress-strain relations for an isotropic elastic solid in 3D: (i.e., a generalized Hooke's Law)

$$\varepsilon_x = \frac{1}{E} \left[\sigma_x - \nu \left(\sigma_y + \sigma_z \right) \right] \qquad \gamma_{xy} = \frac{1}{G} \tau_{xy}$$

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu (\sigma_{z} + \sigma_{x}) \right] \qquad \gamma_{yz} = \frac{1}{G} \tau_{yz}$$

$$\varepsilon_z = \frac{1}{E} \left[\sigma_z - \nu \left(\sigma_x + \sigma_y \right) \right] \qquad \gamma_{zx} = \frac{1}{G} \tau_{zx}$$

Basically, add in off-axis strains from normal stresses in other directions

EE C245: Introduction to MEMS Design

LecM 7

C. Nauve

9/28/07

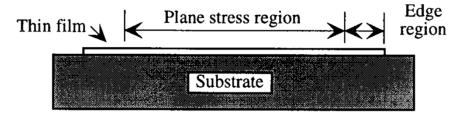
13

13

Important Case: Plane Stress

UC Berkele

 <u>Common case</u>: very thin film coating a thin, relatively rigid substrate (e.g., a silicon wafer)



- * At regions more than 3 thicknesses from edges, the top surface is stress-free $\rightarrow \sigma_z$ = 0
- Get two components of in-plane stress:

$$\varepsilon_x = (1/E)[\sigma_x - \nu(\sigma_v + 0)]$$

$$\varepsilon_{v} = (1/E)[\sigma_{v} - v(\sigma_{x} + 0)]$$

EE C245: Introduction to MEMS Design

LecM 7

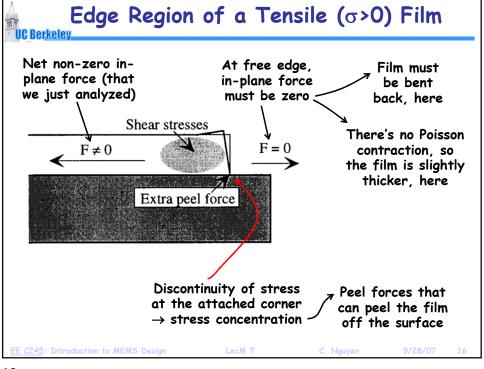
C. Nguyen

9/28/07

Module 7: Mechanics of Materials

Important Case: Plane Stress (cont.) • Symmetry in the xy-plane $\rightarrow \sigma_x = \sigma_y = \sigma$ • Thus, the in-plane strain components are: $\varepsilon_x = \varepsilon_y = \varepsilon$ where $\varepsilon_x = (1/E)[\sigma - v\sigma] = \frac{\sigma}{[E/(1-v)]} = \frac{\sigma}{E'}$ and where $\operatorname{Biaxial\ Modulus} \stackrel{\triangle}{=} E' = \frac{E}{1-v}$

15



Linear Thermal Expansion

UC Berkeley

- * As temperature increases, most solids expand in volume
- Definition: linear thermal expansion coefficient

Linear thermal expansion coefficient $\triangleq \alpha_T = \frac{d\varepsilon_x}{dT}$ [Kelvin⁻¹]

Remarks:

- * α_{T} values tend to be in the 10-6 to 10-7 range
- $^{\bullet}$ Can capture the 10^{-6} by using dimensions of $\mu strain/K$, where 10^{-6} K^{-1} = 1 $\mu strain/K$
- In 3D, get volume thermal expansion coefficient $\longrightarrow \frac{\Delta V}{V} = 3\alpha_T \Delta T$
- For moderate temperature excursions, α_{T} can be treated as a constant of the material, but in actuality, it is a function of temperature

EE C245: Introduction to MEMS Design

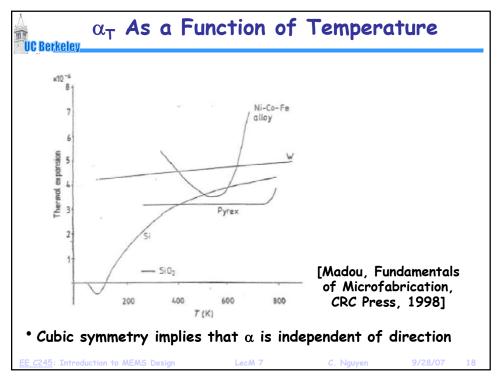
LecM 7

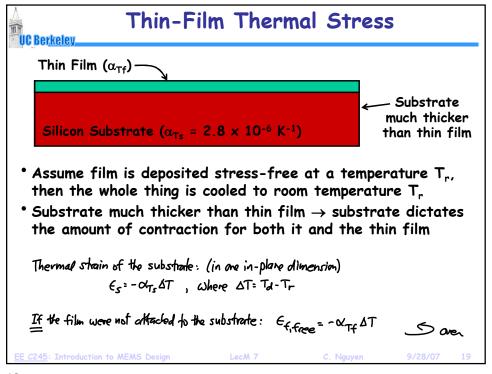
C. Nguyen

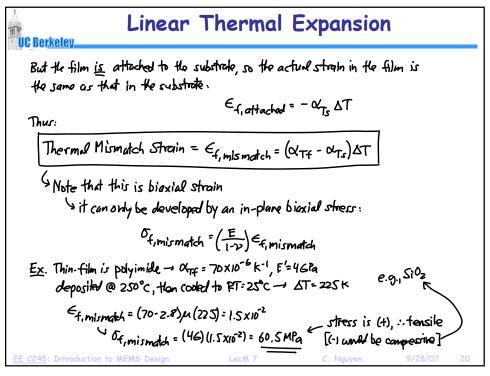
9/28/07

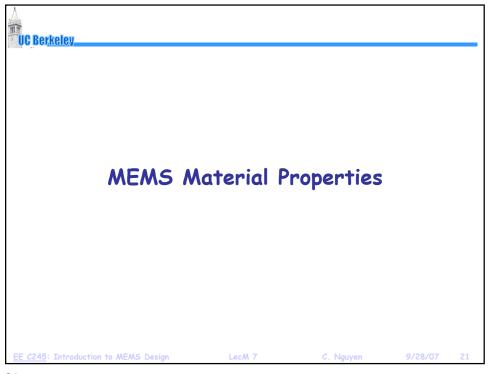
17

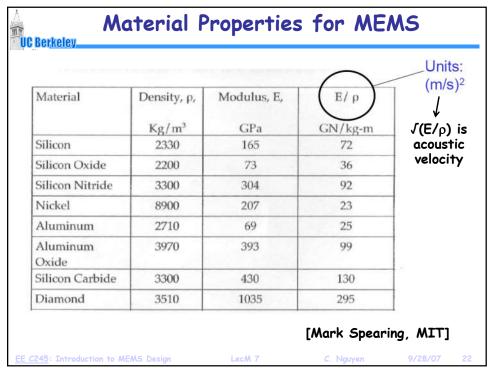
17



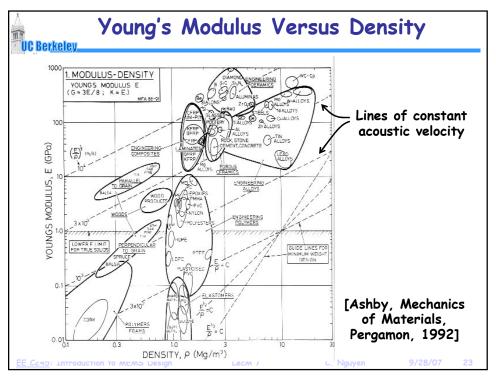




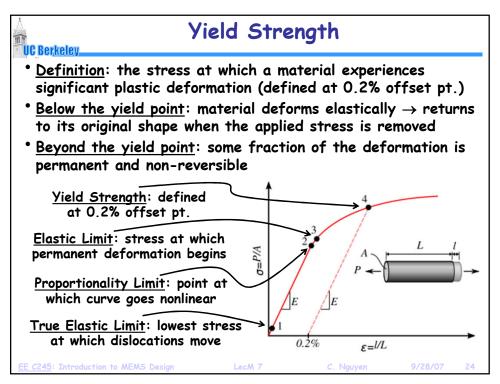




Module 7: Mechanics of Materials



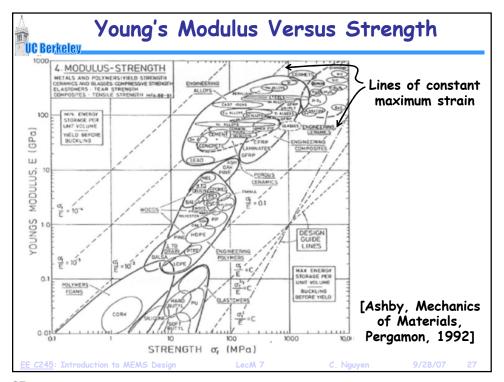
23

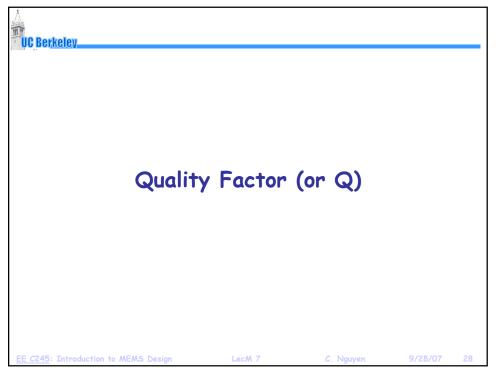


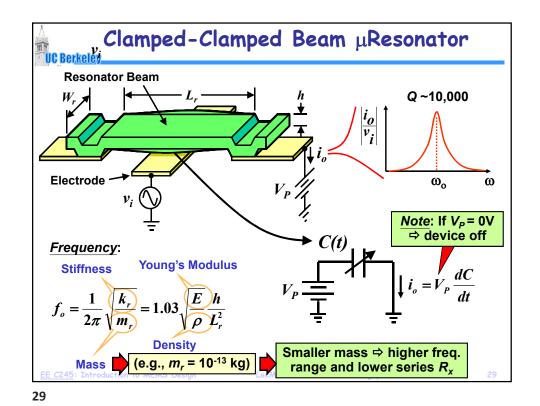
Yield Strength (cont.) UC Berkeley • Below: typical stress vs. strain curves for brittle (e.g., Si) and ductile (e.g. steel) materials Tensile Strength Stress A Fracture **Proportional Limit** (Si @ T=30°C) Ductile (Mild Steel) Brittle (Si Brittle (Si) (or Si @ T>900°C) [Maluf] Strain

7	Е
_	_

	Stored mech	nanical energy		
Material	Modulus, E,	Useful Strength*, σ _f ,	$\frac{\sigma_f}{E}$	$\left(\frac{\sigma_f^2}{E}\right)$
	GPa	MPa	(-) x 10 ⁻³	MJ/m ³
Silicon	165	4000	24	97
Silicon Oxide	73	1000	13	14
Silicon Nitride	304	1000	3	4
Nickel	207	500	2	1.2
Aluminum	69	300	4	1.3
Aluminum Oxide	393	2000	5	10
Silicon Carbide	430	2000	4	9.3
Diamond	1035	1000	1	0.9

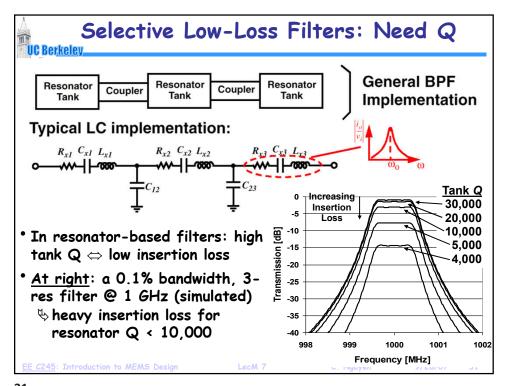


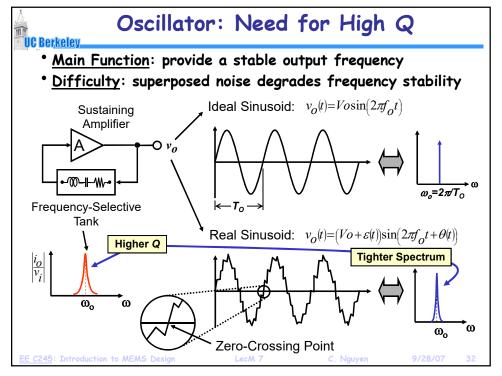


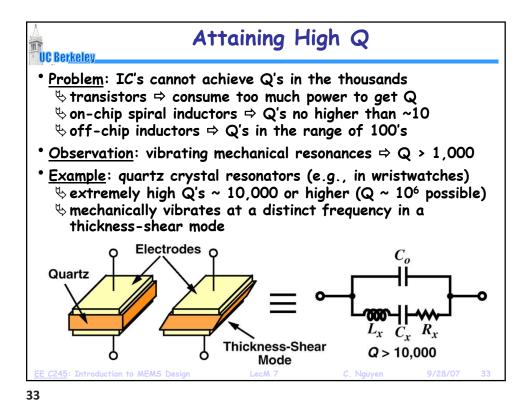


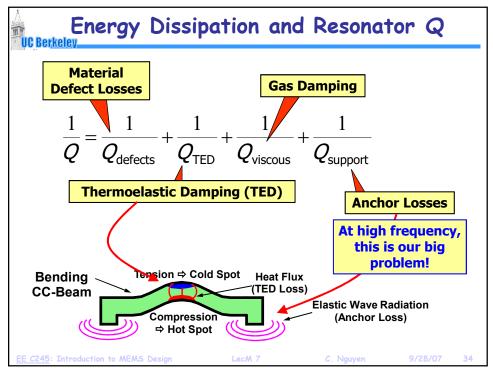
Quality Factor (or Q)

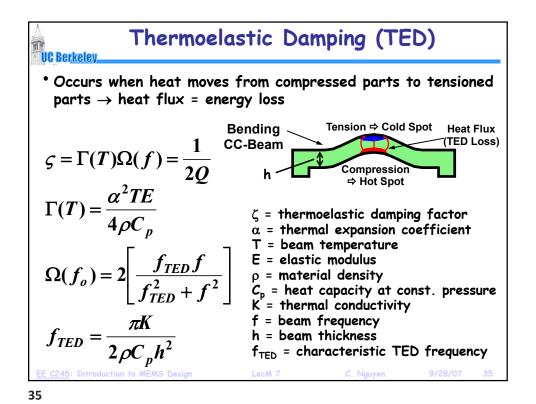
• Measure of the frequency selectivity of a tuned circuit
• Definition: $Q = \frac{\text{Total Energy Per Cycle}}{\text{Energy Lost Per Cycle}} = \frac{f_o}{BW_{3dB}}$ • Example: series LCR circuit $R \quad C \quad L$ • Example: parallel LCR circuit
• Example: parallel LCR circuit $Q = \frac{\text{Im}(Z)}{\text{Re}(Z)} = \frac{\omega_o L}{R} = \frac{1}{\omega_o CR}$ • Example: parallel LCR circuit

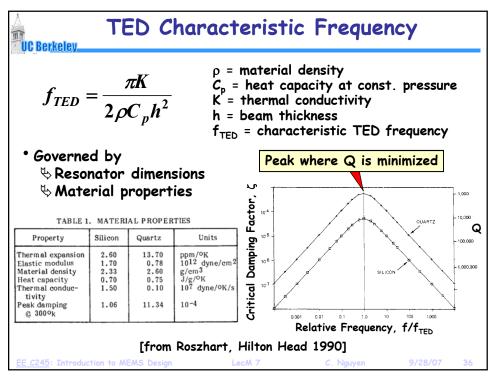


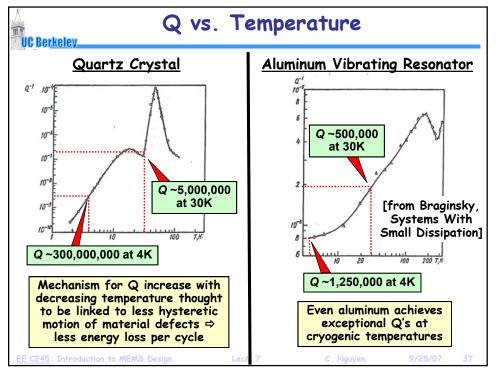


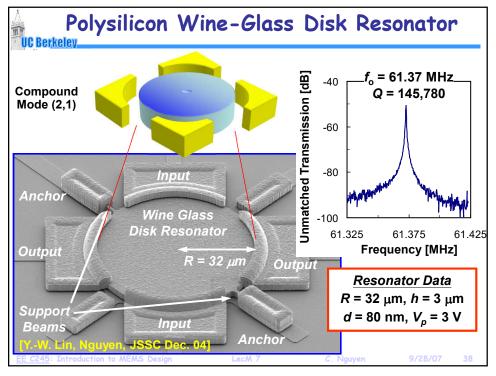


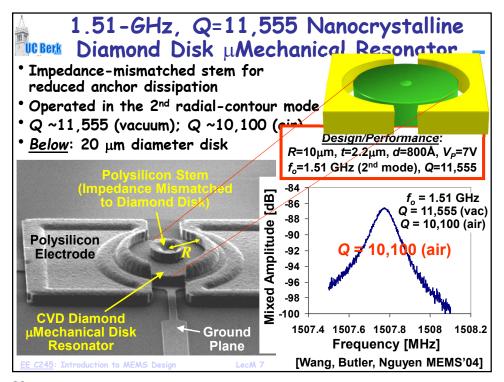


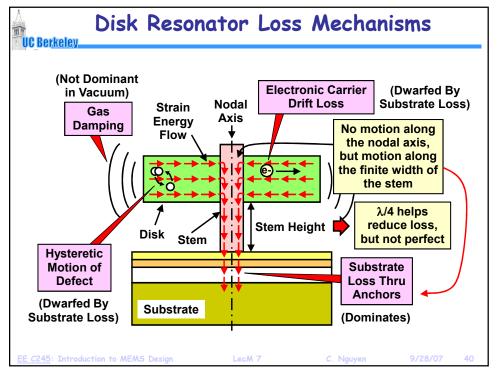


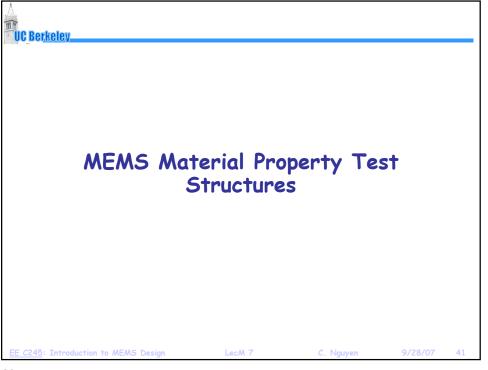


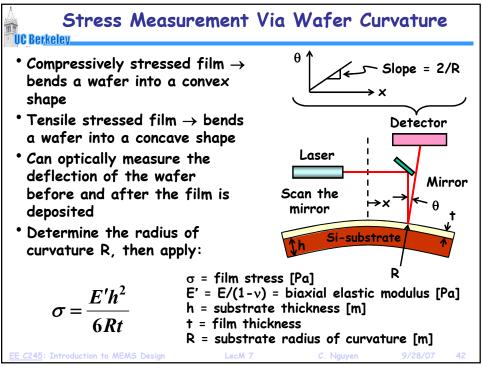


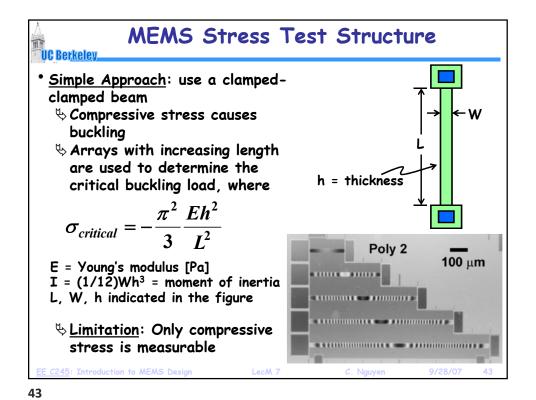




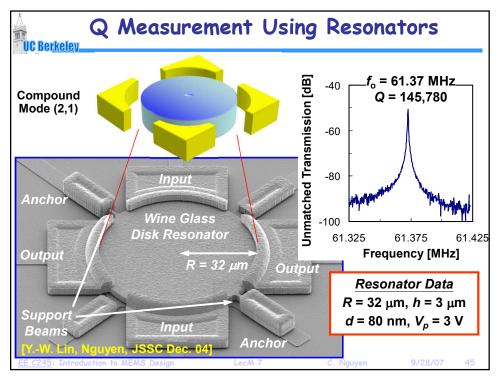


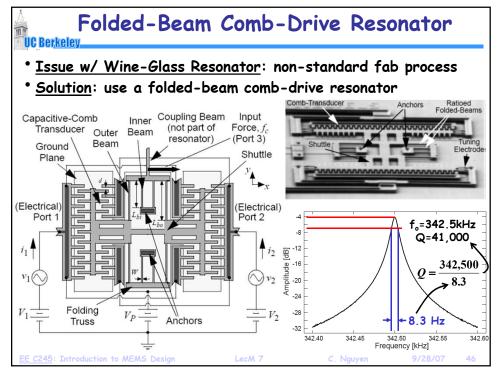




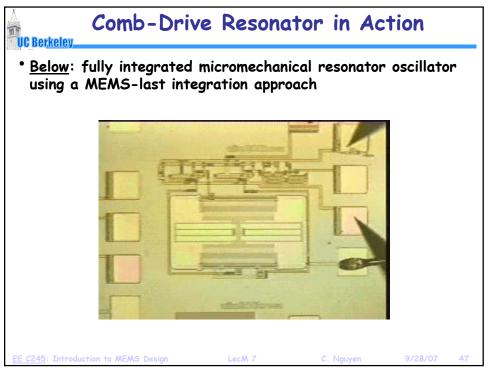


More Effective Stress Diagnostic UC Berkeley. Single structure measures both compressive and tensile stress Compressive Tensile Strain Expansion or contraction of test beam \rightarrow deflection of pointer Indicator Beam Vernier movement indicates Slope Beam type and magnitude of stress Anchor Test Beam Expansion \rightarrow Compression Contraction \rightarrow Tensile

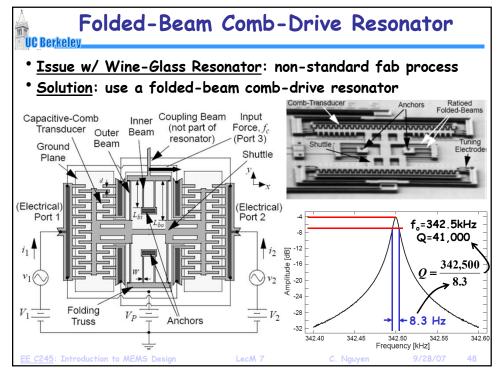


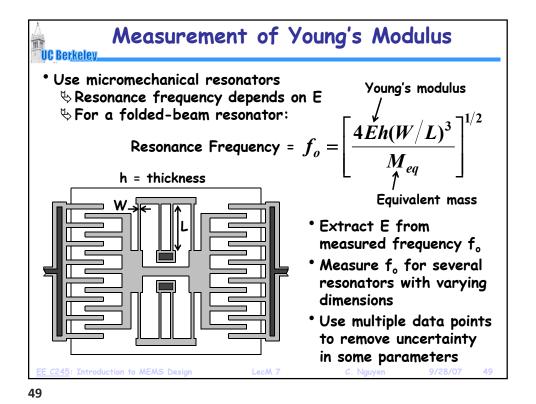


Module 7: Mechanics of Materials



47





Anisotropic Materials

EE C245: Introduction to MEMS Design LecM 7 C. Nguyen 9/28/07 50

Elastic Constants in Crystalline Materials

- * Get different elastic constants in different crystallographic directions \rightarrow 81 of them in all
 - ♥ Cubic symmetries make 60 of these terms zero, leaving
 21 of them remaining that need be accounted for
- Thus, describe stress-strain relations using a 6x6 matrix

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{yz} \\ \tau_{zx} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{yz} \\ \gamma_{zx} \\ \gamma_{xy} \end{bmatrix}$$
Stresses

Stiffness Coefficients

Strains

51

Stiffness Coefficients of Silicon

UC Berkel

- Due to symmetry, only a few of the 21 coefficients are non-zero
- With cubic symmetry, silicon has only 3 independent components, and its stiffness matrix can be written as:

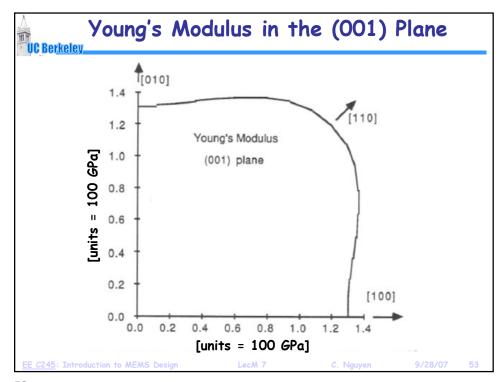
$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{yz} \\ \tau_{zx} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{yz} \\ \gamma_{zx} \\ \gamma_{xy} \end{bmatrix}$$

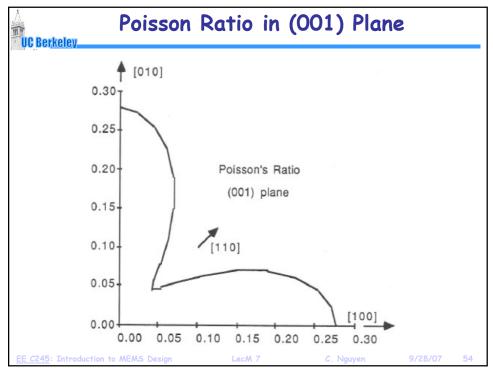
where
$$\begin{cases} C_{11} = 165.7 \text{ GPa} \\ C_{12} = 63.9 \text{ GPa} \\ C_{44} = 79.6 \text{ GPa} \end{cases}$$

EE C245: Introduction to MEMS Design

C. Nguy

9/28/07





Module 7: Mechanics of Materials

Anisotropic Design Implications

UC Berkeley

- Young's modulus and Poisson ratio variations in anisotropic materials can pose problems in the design of certain structures
- E.g., disk or ring resonators, which rely on isotropic properties in the radial directions
 - ∜Okay to ignore variation in RF resonators, although some Q hit is probably being taken
- E.g., ring vibratory rate gyroscopes
 - 🖔 Modė matching is required, where frequencies along different axes of a ring must be the same
 - Not okay to ignore anisotropic variations, here

