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* Reading: Senturia, Chpt. 9

* Lecture Topics:
% Bending of beams
% Cantilever beam under small deflections
% Combining cantilevers in series and parallel
% Folded suspensions
% Design implications of residual stress and stress gradients

Copyright © 2020 Regents of the University of California

CTN 2/27/20



EE 247B/ME 218: Introduction to MEMS Design
Module 8: Microstructural Elements

* UG Betkeley,

Bending of Beams

5 Beams: The Springs of Most MEMS
"UC Betkeley,
* Springs and suspensions very common in MEMS
% Coils are popular in the macro-world; but not easy to
make in the micro-world
% Beams: simpler to fabricate and analyze; become
“stronger” on the micro-scale — use beams for MEMS

Input Gomby Vibrating Shuttle

Drive Anchors

TR RN

Folded Beam Rigid Truss
Suspension

Output Sense
Electrode

Comb-Driven Folded Beam Actuator
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o Bending a Cantilever Beam
UC Betkeley,

Free end condition F
7 .

Clamped end ] v
condition: :
At x=0: T

y=0 x' L

dy/dx = 0 " I I

* Objective: Find relation between tip deflection y(x=L.) and
applied load F

* Assumptions:
1. Tip deflection is small compared with beam length

2. Plane sections (normal to beam's axis) remain plane and
normal during bending, i.e., “pure bending”
3. Shear stresses are negligible

mie

) Reaction Forces and Moments
""UC Betkeley,

. —
Rewes ~§ MMy oint Load F Moment due 4o F, hee :
MDMQ' M, | Mz M= FL

/ '-f_-;
Mowment due o ‘F hew :

Read F@ A
FR’ SP“'

7
Mpg Z :
7
Fg
Reachions For aguilibaum: My o= M, = F(L2)
(Senfuria gies qumbf) ¢ V'x‘f :F.B
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m
""UC Berkeley,

. Sign Conventions for Moments & Shear Forces

" 1

Moment

!

Shear

Positve _— Negave )

by (e

—

Y I
A (-) shear forces
T \L \L T produce counter-
clockwise rotation

(+) moment leads to
) deformation with a (+)

radius of curvature
(i.e., upwards)

S (-) moment leads to
) deformation with a (-)

radius of curvature
(i.e., downwards)

(+) shear forces
produce clockwise
rotation

7
i Beam Segment in Pure Bending
UG Betkeley
3 P
i"quj?;ﬁ;o ( XTEHSIOH Neutral Axis = Lengt,
undargai by
Small section of Lerding
a beam bent in < M, ( M,
response toa )/
tranverse load N ) = 21.,=«\L,.'<}<ne;_,
Applied ’953 (Zr) Z‘(:':ﬁo" . Compression
Moment \ wa 7
Brtioms below Ho neutrd
Consifer a sequen bounded by He dashed lines <05 9 info Compression
defiral by dO-
At 2=0: (i, at Ho neutnlaxls) : Seqment length= dc=RAS (1)
Ataryz:  Segmed lepgth= ol < (R-2)cl® “
Combling ) § G1: oL doe—2l0 - o~ Z e
8
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m Beam Segment in Pure Bending (cont.)
UG Berkeley,

Thus, Ho oxint shain @ 2 a"- d",—-— -=)‘€ -2
d > Ovigiad (wﬁwa'):(g R _®
Segment Ie'g”-

-hlz 4--

Thus, strain varies hinearly almj becm \
thidenarg, and has g mgxdimum vdug X i IR
H T -

A ._hhlz
Of course, Here (s a

\
z
COl'h'.’rPdM(lrv aml’ sheer: ~hiy

0= (8) = fension

O= €af: ?Ei

0% =) = Comp reer\ 'q -\‘f'"

Al el
This gradient in ghecs Hon genemhj a ,,‘.,1’)
bending momefﬁ“.

’ Internal Bending Moment
U[} !mrkelml / g

Momenf' arsund 4
this point

Tension

Neutral Axis

) Mo

Compression

Small section of

a beam bent in < M, g
response to a \do !

transverse load _— R \"_\.1
() yedies
L of Curcudure

Eﬂecﬁwly, 2 :disfune /
To get e bending igyrodt: He moment referenc pt.
$ih’regvaie Shess thrugh He thidney of thebeam "
~ (hlz 2
.- Ew=
e oL S e T
fore {0'

Wi 12 Homent of Inecfia
( M Nete: () vadius of curveture

_pt £T — () inferndd ‘GV\J"S moment!

10
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iy

, Differential Beam Bending Equation
"UC Betkeley
w(x

= ¢>x

S~ Neutral axis of a
bent cantilever beam

Write sut geowe{n'c relatimships: Smadl %'e]

056+ %‘,:._, ds: :2‘0 o —— dszdx

tan® -%ﬁ = s/:;p; ;ii!:fr"@ O= % )

de 2 RO — 448 > %% ®
Totertng (in () (8 1 [ ?:mk%;:j%ﬁ&m]

11

ik

""UC Berkeley,

Example: Cantilever Beam w/ a
Concentrated Load

12
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-  Cantilever Beam w/ a Concentrated Load

[me

UC Betrkeley.
Free end condition F&e Point
% I \ boad
Clamped end Mo y
conditioni~— 7741 . . _ . _. Y 5 i I h
At x=0: T
w=0 X L
dw/dx = 0 " | | .
! M’_\Ij re
Infernad Moment @ PoJHW»'X: M == F(L-%) d
Thus: 0_5:_1, EFz (L) Clampad End RCs: Wlx:0): 0, G2 (x=0)=0
free End £.C%: nove
Soluehg,#apresﬂowﬁ\v:

= use lﬂﬂaw; or use fied Solufim wr= A+Bx FC’)C"“'D’XK, fhon apply B.C.'s

L ( ____) [M@c‘hm@ X due ¥ q Po?'f’ load

W=
zEI F aﬁ,)fed at x=L

13

- Cantilever Beam w/ a Concentrated Load

LAY

“UC Betkeley
Free end condition F&e Point
% : \ Load
Clamped end Mo y
conditionit~—_77.1_ . _  _  _ . _ (l_.'r ....... _I h
At x=0: T
w=0 % X L
dw/dx = 0 " | | .
]

| >

Maximum defoction @ - : Note Hot in genend,
(3 ; forck

e 5)F = (St & Q/ 2 e

where k- K»E—T'- 2 chffnecs @ locabion %2L

5 B locaton ¥ 7

) Ex. L"'(OD/um, W= 2tam, h* Zum

3
Ls k.- ‘;('S°C-)‘2/*)(J%§,) < 0.6 Mom

14
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L Maximum Stress in a Bent Cantilever

I1
UC Betkeley,

From befce, e wdius of curverture |s Given by

2
-R‘-. "ol‘;f e(L%) = maximizel where R0

S secur af Yo S'hﬁmi,wlven x:0:

(1—7' .dlw ) FL /
e S <~
>
Stain is maximived : \slope o

@Af‘hf:.\'l«ffﬂm——)'bfl.f"e é »__z. L(_— LE_
@ M boltam surfaw = compressive mx’ T RET2RT 2HE

3 FL IZ - éL-
[ W“P Ermax © answl«r"z EWL,F

}7 2 €pak Wl«." FJ Maximym Stress in o\)
Rent Cantilever

15
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I
"UC Berkeley,

Stress Gradients in Cantilevers

16
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o Vertical Stress Gradients
""UC Betkeley

* Variation of residual stress in the direction of film growth
* Can warp released structures in z-direction

200FM 20KV

17

o Stress Gradients in Cantilevers
""UC Betkeley

* Below: surface micromachined cantilever deposited at a high
temperature then cooled — assume compressive stress

T e I

Before release After release, Af )
but before bending - After bending

Average
sfris L .02 Tension Tension
f o —> Oy Ox Oy
o Compression Compression
~ THR2 Hi2 HiZ After which,
Compression Yz N < stress is
Stress after release, relieved
Stress before release but before bending After bending
. But stress
Stress gradient Once released, beam gradient remains

Ienng:\ increases slightly ~ T i1 s moment
to relieve average stress that bends beam

18
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5  Stress 6radients in Cantilevers (cont)
“UC Berkeley,
find Ho vadlus of curvahae.
Prise 4o relegue, oxied strecs fee 077 Op — (5%:) <
The M{en»d moment: -
ﬂ..?z i (L a2 iR
o [ g vfu,t e e 5"
26‘ H
‘W oA 2ot m))‘ - WM
Thue, Ho cadite Cypevatune is: J
LMy o  ET E(mv) 1 Eh
R E’I Loy 26
B«axw Shess (I- ,,_Wh}
6@4‘@'\ - I ___ EQJ(.W d‘f 64’%
2 (-v) «f‘ foc a Canhlever
£ Hl Wl Shes Emdiet
0= _?l-—__PT = R can be wed
) b defermire shesy 3|zu(r'en+
19
o Measurement of Stress Gradient
“UC Berkeley,

* Use cantilever beams

. compressive

. tensile

—
g

Y Strain gradient (I' = slope of strain-thickness curve)
causes beams to deflect up or down
% Assuming linear strain gradient I, z = I'L?/2

[P. Krulevitch Ph.D.]

=
—

2
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"UC Berkeley
Folded-Flexure Suspensions
21
i Folded-Beam Suspension
"UC Betkeley,

* Use of folded-beam suspension brings many benefits

Y Stress relief: folding truss is free to move in y-
direction, so beams can expand and contract more readily

to relieve stress
b High y-axis to x-axis stiffness ratio Folding Truss

Input Comb :
Drive Vibrating Shuttle

Anchors

TR RN

Folded Beam Rigid Truss
Suspension

Output Sense
Electrode

Comb-Driven Folded Beam Actuator ,

22
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'
. .
e Beam End Conditions
U
* UG Betkeley,
IABLE 4.1
Types of ¢ ly used support conditions for beams and frames
Displacement Force
boundary boundary
Type of support conditi diti
4 None All, as specified
iRl_l_'_ S I A e = D ) B
o
D{ — X u=0 Moment is specified
A w=0
PINNED
jcl% poee X u=0 T'ransverse |nf‘Cl' and moment
“ ROLLER are specified
(vertical)
o g
e
.‘:.:"- w=0 Horizontal force and bending
i moment are specified
ROLLER
(horizontal)
: . e
7 n=0 Nomo specifed [From Reddy, Finite
— w=0
= dw/dx =0 Element Method]
FIXED or CLAMPED

23

w Common Loading & Boundary Conditions

" UC Betkeley

* Displacement equations derived for various beams with
concentrated load F or distributed load f

* Gary Fedder Ph.D. Thesis, EECS, UC Berkeley, 1994

e

£ [ cantilever | guided-end | fixed-fixed |
s=fe | e=He | =8k
wopa, O g v=ighi | v=E |v=had
5 . CABE | =B - hBE

(a) Concentrated load.

(b) guided-snd beam, (o) gukdod-end beam, cantilever | guided-end | fixed-fixed
concentrated load distributed load I
B | | ek
1
y _3Jy L} _ 1Sy Lt B N A
5 Y= 3R | V=TT | V= sEkT
_ 3 fs Lt YT
z—zl[ﬁif 2= 28w R ""Ti'}'-,ﬁm_ﬁ
(c) clamped-clamped beam, " .
Condeniraled load. O octod e boam. b) Distributed load.

24
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“ Series Combinations of Springs

~UC Berkeley

* For springs in series w/ one load
% Deflections add
% Spring constants combine like “resistors in parallel”

. — oo
(5 | c |
S / L=2L
z & #1
(?—» #2 J
Y F
Y(L) = F/k = 2 y(L) = 2 (F/k,) = F(1/k, + 1/k)
__——
i —
Compliances effectively add:
1/k = 1/k, + 1/k| -
25
“ Parallel Combinations of Springs
“UC Berkeley

* For springs in parallel w/ one load
% Load is shared between the two springs
% Spring constant is the sum of the individual spring

constants
- y(L)
;———“—{: ------------ /5
] a ”
o X e Fr2|
#9
% 2 2
Y b rIT E

Y(L) = F/k = F/k, = Fo/k, = (F/2) (1/k,)

\ :ﬁ\k=2ka

26

Copyright © 2020 Regents of the University of California 13



EE 247B/ME 218: Introduction to MEMS Design CTN 2/27/20
Module 8: Microstructural Elements

i Folded-Flexure Suspension Variants
""UC Betkeley

* Below: just a subset of the different versions
* All can be analyzed in a similar fashion

= =

P RS B IR TR R [
(a) Inner fold, (b) Inner fold, (c) Outer fold, (d) Outer fold,
continuous truss discontinuous truss continuous truss discontinuous truss

[From Michael Judy, Ph.D. Thesis, EECS, UC Berkeley, 1994]

27
i Deflection of Folded Flexures
" UC Berkeley
% B
Y -2 This equivalent to
X oz . P — two cantilevers of
. L length L =L/2
Composite cantilever
free ends attach here
Half of F
l absorbed in .
other hglf 4 sets of these pairs, each of
(symmetrical)  which gets } of the total force F
28
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w  Constituent Cantilever Spring Constant

I1
UC Betkeley,

* From our previous analysis:

FL, , y | _F.y’
= fele 2 g =LY (31 _
1” x(») 2EI, ( 3Lc] 6Elz( =)

* From which the spring constant is:
F 3EI

c _ 4

kc = =
x(L) DL

c

* Inserting L, = L/2

3EI 24EI

4

k, = S
(L/12° L

29
o Overall Spring Constant
" UC Berkeley
Iy ?:,gg * Four pairs of clamped-guided beams
4 ) % In each pair, beams bend in series
% (Assume trusses are inflexible)
' e * Force is shared by each pair — F ;. = F/4
] eLeg — Disleomont o s g okl e
V11 %u.r, spv-hg: are in Senes:
e Bl )
:' S%er:-/y kpalr (klegllk'eg) '% {ea
E : of Falr From befoe: klee klik, = k<
B F Thus:
= L (0 EoE
E % (D) % i
24E
| kgt ke 3
30
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A
fr=1

Folded-Beam Stiffness Ratios

"UC Betkeley,
Folded-beam Y * In the x-direction:
suspension z . 24 ET
- kx — 3 3
| f L
w * In the z-direction:
L % Same flexure and boundary
: | conditions
24EI .
k, = 7
Shuttle
- *In the y-direction:
[See Senturia, §9.2] ky = SEWh
Folding ,
Much
1 . )
e Thus: k—y =4 L stiffer in
Anchor k. W ) | y-direction!
31
Folded-Beam Suspensions Permeate MEMS

"UC Betkeley

32
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["UC Berkeley

W Folded-Beam Suspensions Permeate MEMS

* Below: Micro-Oven Controlled Folded-Beam Resonator

- ———e ti
Temperature ‘ AP
L er}img Resistor /

'y FRR

:“n\ \\é LY

\ X RN\

Substrate
\ __Edge

._ Micro- PIat‘orm

33

" UC Berkeley

Stressed Folded-Flexures

34
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+ Clamped-6uided Beam Under Axial Load

""UC Betkeley

* Important case for MEMS suspensions, since the thin films
comprising them are often under residual stress

* Consider small deflection case: y(x) « L

Z x
&= 7 L o
r—
Q

W

Governing differential equation: (Euler Beam Equation)

4 2
g9y g Y- FS(x-1)
H_/

©dx? dx
Axial Load  Unit impulse @ x=L

35

= The Euler Beam Equation
" UC Berkeley,

: Upword pressyre
Thin beam y hfmm oot e
downuzrd AN
ne
NS T
Axial Stress R CoWH CoWH

* Axial stresses produce no net horizontal force; but as soon
as the beam is bent, there is a net downward force
% For equilibrium, must postulate some kind of upward load

on the beam to counteract the axial stress-derived force

% For ease of analysis, assume the beam is bent to angle =

Downwudd Vericed Fore = 26, WH — By 8) By 179
Upward fore dve 1o P, 148 o

R AN Fufo (BostuBw (RdO)

() z- ow(’scosellr = 2RWH

36
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o The Euler Beam Equation
UC Berkeley
OoH

(Eguilibdum}= 2RWER = 20WH — Fy= 2=

R
beam load oa/ dw
(4" g ? }]-—*’ e M
&mm displocement Note: Use of the full

W ol fion: bend angle of n to
u‘m‘gf AHeert bemj, "o eq‘___ losd___ establish conditions for
": : - M “; e ’UL load balance; but this
Er At ET returns us to case of

v\,/'/exl ( load small displacements and
0!" small angles

EI d +
q. 1 o ecLI.IIV- loaJ atCO(M‘H"é noy + axind
Shoss c‘c.erbvﬂh +o to bevdl"b SHifenees

[1a R AL (m,wn) g (Euler Boam Equation)
L, -]qnslw, in ¥ beom c S<— a fore

S —

37

+ Clamped-6uided Beam Under Axial Load

[
~ UC Betkeley,

* Important case for MEMS suspensions, since the thin films
comprising them are often under residual stress

* Consider small deflection case: y(x) « L

Z x
?—’ < L >i
7 v z::}""f";. /
Yo
S 7 A

7
F
Governing differential equation: (Euler Beam Equation)
d'y d’y
EI.— =Fé(x—1)
Tdxt o dx’ ——

Axial Load  Unit impulse @ x=L

38
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o Solving the ODE

" UC Berkeley

* Can solve the ODE using standard methods
% Senturia, pp. 232-235: solves ODE for case of point load
on a clamped-clamped beam (which defines B.C.'s)
% For solution to the clamped-guided case: see S.
Timoshenko, Strength of Materials IT: Advanced Theory
and Problems, McGraw-Hill, New York, 3 Ed., 1955

* Result from Timoshenko:
o pL-2tanh(pL/2) y(x=1L)

p‘ S‘ F

S >0 (tension) k&
S < 0 (compression)

o —pL+2tan(pL/2) y(x=1L)

k
p‘S‘ F

1L
EI

where p=

39

= Design Implications
""UC Betkeley

* Straight flexures
% Large tensile S means flexure behaves like a tensioned
wire (for which k-! = L/S)
% Large compressive S can lead to buckling (k-! — <)

@If pbk'-g Shah l’:-é,-,%f\
Sl espands by AL57 Ecls

Inner beams

* Folded flexures

% Residual stress P —
only partially outer (2 This Hon applier 4 load To 4o
released 14 W b?mr{dw AZPS
% Length from truss 9 ;"f.'.‘ﬂ
to shuttle's
centerline differs — L Compreseion

by L, for inner

and outer legs F

Compressive
residual stress:
oftset expand

@ Betm Shein: .
AL. A, . Ls
Seiran s G ‘ ALg
M§
40

Copyright © 2020 Regents of the University of California

CTN 2/27/20

20



EE 247B/ME 218: Introduction to MEMS Design CTN 2/27/20
Module 8: Microstructural Elements

o Effect on Spring Constant

""UC Betkeley

* Residual compression on outer legs with same magnitude of
tension on inner legs: Strain ih Ao polysi

L L
Beam Strain: &, =t¢, (_sj : Stress Force: § =tFE¢g, (Tsth

Shain in e bagme > Expandon of Yo Shorller= &l ,
(’ Spring constapt”becomes: 2 L
AL_éle Sopanion
Sp oL g Ty aﬂohwa locol
2 Alsl}/ com + ten ) 0}«,1"0 ’uw
1 of Yo
X e“zlf pal” pL+2 tal'l(pL/Z) . pl—2 tanl'l( pL/2) Heure
IS 2N
* Remedies:

% Reduce the shoulder width L, to minimize stress in legs
% Compliance in the truss lowers the axial compression and
tension and reduces its effect on the spring constant

41
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