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) Lecture Outline

""UC Berkeley,

* Reading: Senturia, Chpt. 10

* Lecture Topics:
% Energy Methods
* Virtual Work
* Energy Formulations
* Tapered Beam Example
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Energy Methods

i More General Geometries
" UC Berkeley,

* Euler-Bernoulli beam theory works well for simple geometries
* But how can we handle more complicated ones?

* Example: tapered cantilever beam

* Objective: Find an expression for displacement as a function

of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

Top view of cantilever's W(x) X
w = W(x)=w(l —T)
50% taper e

x=L
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Solution: Use Principle of Virtual Work
- UC Berkeley,

* In an energy-conserving system (i.e., elastic materials), the
energy stored in a body due to the quasi-static (i.e., slow)
action of surface and body forces is equal to the work done
by these forces ..

* Implication: if we can formulate stored energy as a function
of the deformation of a mechanical object, then we can
determine how an object responds to a force by determining
the shape the object must take in order to minimize the
difference U between the stored energy and the work done
by the forces:

U = Stored Energy - Work Done

* Key idea: we don't have to reach U = O to produce a very
useful, approximate analytical result for load-deflection

5 More Visual Description ...
" UC Berkeley,
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i Fundamentals: Energy Density
" UC Betkeley

* Strain energy density: [J/m3] Wa: [a Qe /da@g ,;;f'm::\‘m
% To find work done in straining materla\,; s

. é(ﬁﬂ&ﬁl Aolain@ posifion (%,,2) 'ﬂ(% MG Coparctn
e o\ W=] 0.de,  x-axis normal stress term
'Q‘Q, MS"@[_ ’td:{(fy)”’dak’ J'P‘rer.t ) slain @ Pa.Sl'Hok (’)(b,%]

s |
Wi | Goed w= | Ee.de, == Ee,

W % § o
@J fc“ll‘/‘t Ct‘ﬂ‘“?‘mw:’ De{M{w
* Total strain energy [J]: oF Gk

% Integrate over all strains (normal and shear')

W= m[ (g +e +e, )+%G(y_\j,2+y‘\f+y_l_zz)}IV

o Bending Energy Density

UC Berkeley,

y’ Neutral Axis

] y(x) = transverse displacement

' " of neutral axis
dx y I

* First, find the bending energy dW,.,q in an infinitesimal

Ieng‘th dV—‘W widtl,
bond = de‘( —Eéx(gj @

_l!{ % %l“’éﬁr N
W ngl‘/l.LE/b dd"ld? iL L/: oﬁyi)ld?(
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= Energy Due to Axial Load

I
"UC Berkeley,

-

* Strain due to axial load S contributes an energy dW.,. ...,
in length dx, since lengthening of the different element dx

(to ds) results in a strain ¢, /g,'w,‘( Theorem
ety T - 1o () = 1 8]
= %‘ (52)2 v Axicl Stain Evergy

(Woua st £5(8r}= fana - £51: (% 4)

o Shear Strain Energy

I
"UC Berkeley,

C3(ELY [ dy
hear — d
W oo = AGWh {dx
2

Shear Modulus

* See W.C. Albert, "Vibrating Quartz Crystal Beam
Accelerometer,” Proc. ISA Int. Instrumentation Symp., May
1982, pp. 33-44

10
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w  Applying the Principle of Virtual Work

UC Betkeley,

* Basic Procedure:
% Guess the form of the beam deflection under the applied
loads
% Vary the parameters in the beam deflection function in
order to minimize:

Assumes
Sum strain ener'gles pomf load

U= ZW ZFu

Dlsplacemenf
at point load

% Find minima by simply setting derivatives to zero

* See Senturia, pg. 244, for a general expression with
distrubuted surface loads and body forces

11

o Example: Tapered Cantilever Beam

UC Betkeley,

* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

Top view of cantilever's IW/(x) N
w4 ) == )
50% taper G

x=L
$ | Adjustable
par'amefer's :

l_)x minimize U
' /N

y(x)= czx +c3x

X F

* Start by guessing the solution ———
% It should satisfy the boundary conditions
Y The strain energy integrals shouldn't be too tedious

* This might not matter much these days, though, since
one could just use matlab or mathematica

12
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i Strain Energy And Work By F

UC Betkeley,

U=w, —F-y(,)

Wi = E J-] (\)[ 1 ] dx (Bending Energy)

dx
W (x)h' PE
I.(x)= \ “1';:2c3+6c‘x
12 dx” - ?
(Using our guess)
w w l——
(x) =W ( oL )

Tip Deflection

l Y X o) 7 3
=—EWh|(1-—)2c, +6c,x) dx—F(c,L +c,L°
S EWi) (=) (2¢; +6¢,x) (6L +e,L))

¢

13

s Find ¢, and ¢; That Minimize U

1|1
UC Betkeley,

* Minimize U — basically, find the c, and c; that brings U
closest to zero (which is what it would be if we had guessed
correctly)

* The ¢, and c; that minimize U are the ones for which the
partial derivatives of U with respective to them are zero:

v,
de, de,

* Proceed:
% First, evaluate the integral to get an expression for U:

2 ) ’
C; ;3 00y 0 Gy 2 3
Lo+ 2L+ 8 L‘}—F(chL\ +c3Lc)

C C

U :EWF{S

16
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= Minimize U (cont)
"UC Betkeley

* Evaluate the derivatives and set to zero:

f)U:(): EWh ¢ —F 2, EWh* e |r.
de, 3 ‘ 4 -

?E:O: éEWh}cg—F e EVWTC, ?
de, 8 ‘ ‘ 3 7

* Solve the simultaneous equations to get ¢, and c;:

84\ FL, 24\ F
c,=| — ; C;=— — :
13 | EWh 13 | EWh

15

= The Virtual Work-Derived Solution
" UC Berkeley,

* And the solution:

24F (7 ;
W(x) = S = L —x x
13EWh” 2

* Solve for tip deflection and obtain the spring constant:

24F Y5, 1 13EWh®
v(L)=| -~ | L k. =F/yl)=|—5
(L) (135%’12}‘ : V(L) ( 601, ]

* Compare with previous solution for constant-width cantilever
beam (using Euler theory):

J’(Lc) =[ 4F ]LCS . 13% smaller than

EWh? " tapered-width case

16
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= Comparison With Finite Element Simulation

""UC Betkeley

* Below: ANSYS finite element model with

L = 500 ym W, = 20 pm E = 170 GPa
h=2pum Wi, = 10 pm

* Result: (from static
analysis)
Gk = 0.471 uN/m
* This matches the
result from energy
minimization to 3
significant figures

17

o Need a Better Approximation?

UG Betkeley

* Add more terms to the polynomial

* Add other strain energy terms:
% Shear: more significant as the beam gets shorter
% Axial: more significant as deflections become larger

* Both of the above remedies make the math more complex,
so encourage the use of math software, such as
Mathematica, Matlab, or Maple

* Finite element analysis is really just energy minimization

* If this is the case, then why ever use energy minimization
analytically (i.e., by hand)?
% Analytical expressions, even approximate ones, give
insight into parameter dependencies that FEA cannot
% Can compare the importance of different terms
% Should use in tandem with FEA for design

18
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