Outline

- Reading: Senturia, Chpt. 9
- Lecture Topics:
 - Bending of beams
 - Cantilever beam under small deflections
 - Combining cantilevers in series and parallel
 - Folded suspensions
 - Design implications of residual stress and stress gradients

Bending of Beams

Beams: The Springs of Most MEMS

* Springs and suspensions very common in MEMS
 - Coils are popular in the macro-world; but not easy to make in the micro-world
 - Beams: simpler to fabricate and analyze; become “stronger” on the micro-scale → use beams for MEMS

Comb-Driven Folded Beam Actuator
Bending a Cantilever Beam

- **Objective**: Find relation between tip deflection \(y(x=L) \) and applied load \(F \)
- **Assumptions**:
 1. Tip deflection is small compared with beam length
 2. Plane sections (normal to beam's axis) remain plane and normal during bending, i.e., “pure bending”
 3. Shear stresses are negligible

Clamped end condition:
- At \(x=0 \):
 - \(y=0 \)
 - \(\frac{dy}{dx} = 0 \)

Free end condition:
- At \(x=L \):
 - \(y=0 \)
 - \(\frac{dy}{dx} = 0 \)

Reaction Forces and Moments

- **Point Load**
 - \(M_R = M \)
 - \(M_z = F(L-x) \)
 - \(V_x = F \)
 - \(V_{x,r} = F \)

Sign Conventions for Moments & Shear Forces

- **Moment**:
 - \((+)\) moment leads to deformation with a \((+)\) radius of curvature (i.e., upwards)
 - \((-)\) moment leads to deformation with a \((-)\) radius of curvature (i.e., downwards)

- **Shear**:
 - \((+)\) shear forces produce clockwise rotation
 - \((-)\) shear forces produce counterclockwise rotation