Lecture 15: Beam Combos II

- Announcements:
 - HW#5 online & due Wednesday, 3/10, at 12 noon
 - Midterm Exam about 1.5 weeks away
 - Will provide information next lecture
 - Let me know if you are in a drastically different time zone than Pacific Time

- Today:
 - Reading: Senturia, Chpt. 9
 - Lecture Topics:
 - Bending of beams
 - Cantilever beam under small deflections
 - Strain Gradients
 - Combining cantilevers in series and parallel
 - Folded suspensions
 - Design implications of residual stress and stress gradients

- Last Time:
 - Learned how to combine springs
 - Now, apply to common MEMS cases …

Typical Questions:
- All demand that we know $y = f(F)$
 1. How does the structure move in response to a force at a specific location?
 2. What is the frequency response to an AC force applied at a specific location?
 3. Noise?
 4. Response to environmental stimuli? (e.g., rotation)
 5. How does stress affect the behavior of the structure?
Procedure:

1. Build the def. (excite the def.) \(\rightarrow \) in the x-direction
 (for this example)

\[k_1, k_2 \rightarrow m_1, k_3 \rightarrow m_2 \rightarrow \ldots \]
\[k_4 \rightarrow \ldots \]
\[k_5 \rightarrow m_3, k_6 \rightarrow \ldots \]
 Anch

\(\Rightarrow \) best way is to approach: simplify this mechanical def.
\(\Rightarrow \) need to know how springs combine

2. Analyze to get \(\kappa = f(F) \)
 displacement \(\rightarrow \) force

\[k \rightarrow m \rightarrow F = k\kappa \rightarrow \kappa = F \cdot \left(\frac{1}{k} \right) \]

(a) Case 1: series springs
\(\kappa_1 \rightarrow \kappa_2 \rightarrow \kappa_3 \)
\(\kappa \) are across variables

(b) Case 2: parallel springs
\(F = \frac{1}{k_1 + k_2} \)

\(\kappa_1 \rightarrow \kappa_2 \rightarrow \kappa_3 \)

\(\kappa_1 \) is indicator parallel

\(\frac{1}{k_1 + k_2} \) if only need to go thru

\(F = f_1 + f_2 = k_1\kappa_1 + k_2\kappa_2 \) one of the springs to get from
anch to the far cry pt., then
the springs are in parallel.

\[k_{tot} = k_1 + k_2 \] (for \(k_1 \) & \(k_2 \) in parallel)
Series Combination of Springs

1. **Clamped B.C.**
 -\[L_c \]
2. **Free B.C.**
 -\[y(L) \]
3. **Guided B.C.**

Y_{tot} = Y_1 + Y_2 \quad \text{series}

- Y must go through both springs to get from anchor to forcing pt.

Parallel Combination of Beams

1. **Pinned B.C.**
 -\[k_a = k_b \]
2. **Fixed B.C.**
 -\[k_c \]

Y_{tot} = \frac{k_a}{2} \quad \text{parallel}

- To go from one to forcing pt., need only go through one of the beams.

\[k_{tot} = k_a + k_b = k_c \]
Stiffness of Folded-Beam Suspension @ Shuttle Location

Parallel: $k_{tot} = \frac{4}{9} k_c k_c$

Micromechanical Filter

1. Find the stiffness at point A.
2. Assume the shuttles and folding trusses are rigid.
3. Apply force at A: what is χ_A?
4. $\chi_A = \frac{F}{k_A}$

k_A is stiffness at point A
Get k_A:

\[k_A = k_{\text{comb}} + k_c = \frac{k_{c\max} L}{2} + k_c = k_{\text{comb}} + k_c \]

- Guided B.C.'s everywhere
- Sides
- Free
- Constraint $\rightarrow k_{c\max}$
- Free, B.C.
- Free, B.C.
- Free, B.C.
- Anchored
- Free
- Forced pt.
- Pinned $\rightarrow k_{c\max}$

Beam Combos II

Torsion Spring (Non-Ideality)

- Important case for MEMS suspensions, since the thin films comprising them are often under residual stress
- Consider small deflection case: $y(x) \ll L$

Governing differential equation: (Euler Beam Equation)

\[
EI_z \frac{d^4 y}{dx^4} - S \frac{d^2 y}{dx^2} = F\delta(x-L)
\]

Heuristic Derivation for the Euler-Beam Equation

Consider first a straight beam under an axial stress:

\[
\sigma_a \rightarrow 0
\]

\[\Rightarrow \text{no effect on } z\text{-directed stiffness} \]

- when the beam is straight
- but, when the beam is bent

Thin beam

Axial Stress

z-directed component

\[k_{z\text{eff}} \text{ is affected!} \]
* Upward pressure P_o to counteract the downward force from f to keep everything in static equilibrium.

For ease of analysis:

Assume the beam is bent to an angle θ.

Downward radial force: $2GWH$

Upward force due to P_o:

$F_u = \int_0^\pi (P_o \sin \theta) W (R \theta) d\theta$

$= -P_o WR \cos \theta \bigg|_0^\pi$

$= 2WRP_o$

$\textbf{[Equilibrium]} \Rightarrow 2WRP_o = 2 \sigma_o WH \rightarrow P_o = \frac{\sigma_o H}{R}$

$q_o = \text{beam load/unit length} = P_o W$, \(\frac{1}{R} = \frac{d^2 w}{dx^2} \)

beam displacement

$q_o = \delta WH \frac{d^2 w}{dx^2}$

generally to the case of small displacements