Lecture 16b: Energy Methods

Announcements:
• HW#6 online & due Wednesday, 3/17, at 12 noon
• Module 9 on “Energy Methods” online
• Midterm Exam next Thursday, 3/18
 ✉️ Can we do 5:00 p.m. - 7:30 p.m.
 ✉️ We will go through the Midterm Info Sheet
• This part of lecture happening during Friday discussion section (just finishing up Energy Methods)

Today:
• Reading: Senturia, Chpt. 10
• Lecture Topics:
 ✐ Energy Methods
 ✐ Virtual Work
 ✐ Energy Formulations
 ✐ Tapered Beam Example

Last Time:
• Looked at bending energy density
• Now, continue with energy due to an axial load ...

Energy Method

= take some problem as before: apply a force to the tip of a cantilever

\[\begin{align*}
\text{①} & \quad \text{Apply force.} \\
\text{②} & \quad \text{Beam responds by bending.} \\
\text{③} & \quad \text{This force has done work:} \\
& \quad W = F \cdot y(c) \\
\text{④} & \quad \text{Strain generated (& stress) } \\
& \quad \text{So the beam has received an influx of stored energy} \\
& \quad \text{magnitude of } \frac{d}{dx} \text{ determines the slope} \\
\text{⑤} & \quad \text{Then:} \\
& \quad U = \text{Stored Energy} - \text{Work Done} \to 0 \\
& \quad \text{(Choose the right shape!)}
\end{align*} \]

Transfer function:

\[y(x) = f(x, F) \]

This is how we got the beam’s response to F.
Fundamentals of Energy Density

General Definition of Work:

\[W(q_i) = \int_0^{q_i} e(q) \, dq \]

where \(e = e_{	ext{final}} - e_{	ext{initial}} \)

for EE: \(W(Q_i) = \int_0^Q \frac{1}{C} \, dQ \)

Strain Energy Density:

\[\sigma = \sum \sigma_x \, e_x \]

value of strain at position \((x, y, z)\)

\[\sigma_x = E \varepsilon_x \]

\[\sigma = \int_0^x E \varepsilon_x \, dx \]

Total Strain Energy: \([J]\)

\[W = \iiint \left(\frac{1}{2} E (e_x^2 + e_y^2 + e_z^2) + \frac{1}{2} G (\gamma_{xx}^2 + \gamma_{yy}^2 + \gamma_{zz}^2) \right) \, dV \]

\[W_{\text{total}} = \frac{1}{2} EI_z \int_0^L \left(\frac{d^2 y}{dx^2} \right)^2 \, dx \]
Energy due to Axial Load

\[ds = \left[(dx)^2 + (dy)^2 \right]^{1/2} = dx \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{1/2} \]

by biarmpial theorem

\[ds = dx \left[1 + \frac{1}{2} \left(\frac{dy}{dx} \right)^2 \right] \]

\[\varepsilon_x = \frac{ds}{dx} \cdot \frac{dx}{dx} = \frac{1}{2} \left(\frac{dy}{dx} \right)^2 \]

\[\left[dW_{\text{axial}} = 5 \varepsilon_x \cdot dx = \frac{1}{2} \cdot 5 \cdot \left(\frac{dy}{dx} \right)^2 \cdot dx \right] \]

\[W_{\text{axial}} = \frac{1}{2} \cdot 5 \int_0^1 \left(\frac{dy}{dx} \right)^2 \cdot dx \]

\[\Rightarrow \text{Axial Strain Energy} \]

\[\Rightarrow \text{Look at shear strain energy in your module.} \]