Etching Basics (cont.)

2. **Selectivity**

- **Ideal Etch**
 - PR
 - Poly-Si
 - SiO$_2$
 - Si
 - Only poly-Si etched (no etching of PR or SiO$_2$)
- **Actual Etch**
 - PR partially etched
 - Poly-Si
 - SiO$_2$
 - Si
 - SiO$_2$ partially etched after some overetch of the polysilicon

Why overetch?

- **Ideal Etch**
 - $\frac{\sqrt{d^2 - 1.4d}}{d} = 0.56\mu m$
- **Actual Etch**
 - Poly-Si \rightarrow conformal if deposited by LPCVD
 - Thickness spots due to topography!

Depends on the selectivity of poly-Si over the oxide

Define selectivity of A over B:

- $S_{ab} = \frac{E.R._a}{E.R._b}$
 - Etch rate of A
 - Etch rate of B
- **Selectivity of A over B**
 - e.g., wet poly etch (HNO$_3$ + NH$_4$ + H$_2$O)
 - $S_{poly/SiO_2} = \frac{15}{1}$ (very good selectivity)
 - e.g., polysilicon dry etch:
 - $S_{poly/SiO_2} = \frac{5}{7}$ (but depends on type of etcher)
 - ECR: 30:1
 - Bosch: 100:1 (or better)

If $S_{poly/SiO_2} = \frac{8}{1}$

- 40% overetch removes
 - $\frac{0.16}{8} = 20\text{nm of oxide!}$
- This will etch all poly over the thin oxide, etch thru the 10nm of oxide, then start etching into the silicon substrate \nobreakdash-- needless to say, this is bad!

- **With better selectivity:**
 - e.g., $S_{poly/SiO_2} = \frac{30}{1}$
 - (Can attain with high density Cl plasma ECR etch!)
 - 40% overetch removes $\frac{0.16}{30} = 5.3\text{nm}$ (better)
Dry Etching

Dry etching is a process used in the fabrication of microelectromechanical systems (MEMS) and semiconductor devices. It involves the removal of material from a substrate without the use of liquid or wet chemicals. This process is crucial in the fabrication of microstructures, enabling precise control over the dimensions and shapes of the devices.

Physical Sputtering (Ion Milling)

- **Bombard substrate with energetic ions** → etching via physical momentum transfer
- **Give ions energy and directionality using E-fields**
- **Highly directional → very anisotropic**

- **Steep vertical wall**

Problems With Ion Milling

1. PR or other masking material etched at almost the same rate as the film to be etched → very poor selectivity!
2. Ejected species not inherently volatile → get redeposition → non-uniform etch → grass!

Because of these problems, ion milling is not used often (very rare)

Physical Etching

- **Physical sputtering**
- **Plasma etching**
- **Reactive ion etching**

All based upon plasma processes. (+) ions generated by inelastic collisions with energetic e^-s. Get avalanche effect because more e^-s come out as each ion is generated.

Develop (+) charge to compensate for (+) ions will be accelerated to the wafer.

Dry Etching

- **Develop (-) bias**
- **RF (also, could be microwave)**
- **(+/-) ions generated by inelastic collisions with energetic e^-s.**
- **Get avalanche effect because more e^-s come out as each ion is generated.**

Develops (+) charge to compensate for. (+) ions will be accelerated to the wafer.
Plasma Etching

* Plasma (gas glow discharge) creates reactive species that chemically react with the film in question
* Result: much better selectivity, but get an isotropic etch

Plasma Etching Mechanism:
1. Reactive species generated in a plasma.
2. Reactive species diffuse to the surface of material to be etched.
3. Species adsorbed on the surface.
4. Chemical reaction.
5. By-product desorbed from surface.
6. Desorbed species diffuse into the bulk of the gas

MOST IMPORTANT STEP! (determines whether plasma etching is possible or not.)

Ex: Polysilicon Etching w/ CF₄ and O₂

CF₄ → CF₄⁺ + CF₃⁺ + CF₂⁺ + CF⁺ + F⁺ + F₀ + CF₂⁺ + ...

result: (highly reactive)

Si⁺ + CF₄ → CF₃ + F + e⁻

SiF₆, SiF₄ both volatile: dry etching is possible.

• F₀ is the dominant reactant → but it can’t be given a direction → thus, get isotropic etch!

Ex: Polysilicon Etching w/ CF₄ and O₂

• Problems:
 1. Isotropic etching
 2. Formation of polymer because of C in CF₄

 Solution: add O₂ to remove the polymer (but note that this reduces the selectivity, S_{poly/PR})

• Solution:
 Use Reactive Ion Etching (RIE)

Reactive Ion Etching (RIE)

• Use ion bombardment to aid and enhance reactive etching in a particular direction
 Result: directional, anisotropic etching!

• RIE is somewhat of a misnomer
 It’s not ions that react … rather, it’s still the neutral species that dominate reaction
 Ions just enhance reaction of these neutral radicals in a specific direction

• Two principle postulated mechanisms behind RIE
 1. Surface damage mechanism
 2. Surface inhibitor mechanism
RIE: Surface Damage Mechanism

- Relatively high energy impinging ions (>50 eV) produce lattice damage at surface
- Reaction at these damaged sites is enhanced compared to reactions at undamaged areas

Enhanced reaction over plasma

Result: E.R. at surface >> E.R. on sidewalls

RIE: Surface Inhibitor Mechanism

- Non-volatile polymer layers are a product of reaction
- They are removed by high energy directional ions on the horizontal surface, but not removed from sidewalls

Enhanced reaction over plasma

Result: E.R. at surface >> E.R. on sidewalls

Deep Reactive-Ion Etching (DRIE)

The Bosch process:
- Inductively-coupled plasma
- Etch Rate: 1.5 - 4 μm/min
- Two main cycles in the etch:
 - Etch cycle (5-15 s): SF₆ (SF₆⁻) etches Si
 - Deposition cycle (5-15 s): C₄F₈ deposits fluorocarbon protective polymer (CF₂)n
- Etch mask selectivity:
 - SiO₂ ~ 200:1
 - Photoresist ~ 100:1
- Issue: finite sidewall roughness
 - scalloping < 50 nm
- Sidewall angle: 90° ± 2°

DRIE Issues: Etch Rate Variance

- Etch rate is diffusion-limited and drops for narrow trenches
 - Adjust mask layout to eliminate large disparities
 - Adjust process parameters (slow down the etch rate to that governed by the slowest feature)
Semiconductor Doping

Doping of Semiconductors

- Semiconductors are not intrinsically conductive
- To make them conductive, replace silicon atoms in the lattice with dopant atoms that have valence bands with fewer or more e−'s than the 4 of Si
- If more e−'s, then the dopant is a donor: P, As
 - Extra e− is effectively released from the bonded atoms to join a cloud of free e−'s, free to move like e−'s in a metal
- If fewer e−'s, then the dopant is an acceptor: B
 - Lack of an e− = hole = h+

Doping of Semiconductors (cont.)

- Conductivity Equation:
 \[\sigma = q \mu_n n + q \mu_p p \]
 - Conductivity
 - \(q \) = charge magnitude on an electron
 - \(\mu_n \) = electron mobility
 - \(n \) = electron density
 - \(\mu_p \) = hole mobility
 - \(p \) = hole density

- If fewer e−'s, then the dopant is an acceptor: B
 - \(\vdots \) ... \(\vdots \) ... \(\vdots \) : Si : Si : Si : B : Si : B : Si : Si :
 - Dope: Si : Si : Si
 - New hole moved

General Comments on Predeposition

- Higher doses only: \(Q = 10^{13} - 10^{16} \text{ cm}^{-2} \) (I/I is \(10^{11} - 10^{16} \))
- Dose not well controlled: ± 20% (I/I can get ± 1%)
- Uniformity is not good
 - ± 10% w/ gas source
 - ± 2% w/ solid source
- Max. conc. possible limited by solid solubility
 - Limited to \(\approx 10^{20} \text{ cm}^{-3} \)
 - No limit for I/I → you force it in here!
- For these reasons, I/I is usually the preferred method for introduction of dopants in transistor devices
- But I/I is not necessarily the best choice for MEMS
 - I/I cannot dope the underside of a suspended beam
 - I/I yields one-sided doping → introduces unbalanced stress → warping of structures
 - I/I can do physical damage → problem if annealing is not permitted
- Thus, predeposition is often preferred when doping MEMS
Diffusion Modeling

Dependence:

\[N(x,t) \rightarrow J \]

Fick's Law of Diffusion (1st law):

\[J(x,t) = -D \frac{\partial N(x,t)}{\partial x} \]

Continuity Equation for Particle Flux:

\[\frac{\partial N(x,t)}{\partial t} = -\nabla \cdot J \]

\[= \text{rate of increase of conc. on time} \]

\[= \text{negative of divergence of particle flux} \]

Diffusion Coefficient

\[D \]

Diffusion Modeling (cont.)

We're interested in now in the one-dimensional form:

\[\frac{\partial N(x,t)}{\partial t} = D \frac{\partial^2 N(x,t)}{\partial x^2} \]

\[\text{Fick's 2nd law of diffusion in 1-D} \]

Solutions:

- depended upon boundary condition
- use variable separation, or laplace transform techniques

Case 1: Predeposition → constant source diffusion → surface concentration stays the same during the diffusion

\[t_s < t < t_e \]

\[(t_s < t < t_e) \]

Complementary error function profile:

- background = \(N_b \)
- surface concentration = \(N_s \)
- \(t_s \)
- \(t_e \)
- \(x_i \), distance from surface

Diffusion Modeling (Predeposition)

If plotted on a linear scale, would look like this:

\[N(x) \]

Boundary Conditions:

\[N(0,t) = N_s \]

\[N(\infty,t) = N_b \]

\[N(x,0) = N_i \]

\[N(x,t) = N_0 \text{erfc} \left(\frac{x}{2 \sqrt{Dt}} \right) \]

\[\text{erfc} \]

\[\text{complementary error function, real numbers only} \]

\[Q = \int_0^x N_i(x,t) dx \]

\[Q(t) = \frac{2 D N_i}{x_i} \text{erfc} \left(\frac{x_i}{2 \sqrt{D t}} \right) \]

\[x \]

- area under the curve

\[x \]

- characteristic diffusion length

\[2 \sqrt{Dt} \]

Copyright © 2021 Regents of the University of California