Lecture 7: Surface Micromachining I

- Announcements:
 - HW#1 due Wednesday, 2/10, at 12 noon
 - Module 5 on “Surface Micromachining” online

- Today:
 - Reading: Senturia, Chpt. 3; Jaeger, Chpt. 2, 3, 6
 - Lecture Topics:
 - Diffusion
 - Ion Implantation
 - Reading: Senturia Chpt. 3, Jaeger Chpt. 11,
 - Handouts: “Surface Micromachining for
 Microelectromechanical Systems”, “Etch Rates for
 Micromachining—Part II”
 - Lecture Topics:
 - Polysilicon surface micromachining
 - Stiction
 - Residual stress
 - Topography issues
 - Nickel metal surface micromachining
 - 3D “pop-up” MEMS
 - Foundry MEMS: the “MUMPS” process
 - The Sandia SUMMIT process

- Last Time:
 - Going through Module 4 (“Lithography, Etching, and
 Doping”) diffusion
 - Continue with this now

Ion Implantation

- A more accurate way to introduce dopants below
 1. Accelerate B+ ions into the Si-substrate
 2. B+ punches into the Si
 3. Raise T to move the B into the lattice only when
 it’s in the lattice for a sufficient time
 4. Keep T up to drive the dopants in to the desired depth.

Advantages:

1. Accurate dose
2. Change depth by setting ion energy
3. No need for high temperature - anneal can be a
 rapid thermal anneal (RTA)
Problem: COST!

An ion implant is quite a sophisticated piece of equipment! → and expensive! (> $1 million)

B+ gas → plasma

B₂H₆ → B₂H₄ + B₂ +

B₂H₅ + B +

B+ gas then accelerate it into the wafer!

This takes intricate tuning.

Energy Range: 20 keV - 100 keV

Penetration Depth: fraction of a μm

- Larger ions don't go as far as smaller
 (heavier ions penetrate shallower than smaller)

Doze: 10¹¹ - 10¹² cm⁻²

Now, start going through Module 5 on Surface Micromachining

- Straight or Sloped Sidewalls:
 - Often want sloped sidewalls in order to reduce the sharpness of corners
 - Easier to deposit over
 - Sharp corners concentrate stresses
 - High stress can weaken structures creating a reliability concern
 - High stress can dissipate energy, lowering Q
 - When you want straight sidewalls (e.g., for lateral electrostatic drive), use a hard mask
 - PR can't last for thick structures
 - A hard mask suppresses angle transfer
What if we want straight sidewalls?

- PR edge mover
- Si_2 (hard mask)
- polysilicon
- Si_2
- Substrate

Final Si_2 sidewalls are sloped!
(transformed some of the PR stage to the Si_2)

Final slope depends on etchant selectivity.

$\text{Si}_2^\text{PR} \leftarrow$ longer \rightarrow smaller stage in Si_2

(assumed anisotropic etching)

Actual PR will be slightly sloped

If want sloped sidewalls, slope the PR \rightarrow can do this by overexposing it.