EE C247B – ME C218
Introduction to MEMS Design
Spring 2021

Prof. Clark T.-C. Nguyen
Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 14: Sensing Circuits

Lecture Outline

• Reading: Senturia, Chpt. 14
• Lecture Topics:
 • Detection Circuits
 • Velocity Sensing
 • Position Sensing
Velocity-to-Voltage Conversion

To convert velocity to a voltage, use a resistive load

Consider the mechanical device by itself first. Assume free output shafted.

For velocity to voltage conversion:

\[V_o = \frac{1}{k} \oint \omega \, d\theta \]

\[V_o = \frac{1}{k} \oint \omega \, d\theta \]

Solve the problem at resonance first, then multiply by \(\Theta(t) \)

\[V_o \frac{N_o}{N_o} = \frac{R_o}{R_o + R_L} \Theta(t) \]

Voltage representing velocity

Work @ resonance: (to simplify the analysis)

\[V_o \frac{N_o}{N_o} = \frac{R_o}{R_o + R_L} \Theta(t) \]

Then, generalize to off resonance:

\[V_o \frac{N_o}{N_o} = \frac{R_o}{R_o + R_L} \Theta(t) \]

Copyright © 2021 Regents of the University of California
Velocity-to-Voltage Conversion

To convert velocity to a voltage, use a resistive load.

Brute force approach:

\[V_o = \frac{R_0}{R_x + \frac{1}{sC_x} + \frac{sL_x}{R_0}} \]

Since this structure has completely symmetrical I/O ports:

\[Q = \frac{\omega_x}{R_x} \rightarrow Q_x = \frac{\omega_x}{R_x + R_0} \]

\[Q = \frac{1}{L_x} \rightarrow Q_x = \frac{1}{L_x} \]

\[Q = \frac{R_x}{R_{x+R_0}} \]

Velocity Sensing Circuits
Velocity-to-Voltage Conversion

To convert velocity to a voltage, use a resistive load.

Problems With Purely Resistive Sensing

Now, we get: (approximately)

\[\frac{V_o}{V_1} \approx \frac{R_o}{R_o + R_D} \]

Depending on both \(R_o + R_D \).
Problems With Purely Resistive Sensing

In general, the sensor output must be connected to the inputs of further signal conditioning circuits → input \(R_i \) of these circuits can load \(R_D \)

These change w/ hook-up → not good.

Problem: need a sensing circuit that is immune to parasitics or loading.

Soln: use op amps.

The TransR Amplifier Advantage

- The virtual ground provided by the ideal op amp eliminates the parasitic capacitance \(C_p \) and \(R_i \)

- The zero output resistance of the (ideal) op amp can drive virtually anything

\[V_0 = 0 \Omega \]

Virtual Ground ⇒ No voltage across \(C_p \)

\[N_0 = \frac{R_2}{R_x} \Theta(s) \]

Copyright © 2021 Regents of the University of California
Position Sensing Circuits

Position-to-Voltage Conversion

- To sense position (i.e., displacement), use a capacitive load

\[
\frac{N_0}{V_0} = \frac{C_D}{R_x + \frac{1}{C_x} + sL_x + \frac{1}{C_D}}
\]

\[
S = \frac{1}{1 + \frac{5R_xC_x}{11C_D} + \frac{5}{11C_D} + \frac{L_xE_p}{11C_D}}
\]

\[
\left[\omega_0, \frac{1}{L_xE_p}, a_c(1 + C_D/C_0), b_c(1 + C_D/C_0) \right]
\]

\[
\left[Q, \omega_0, \frac{L_x}{R_x}, \frac{C_D}{C_0}, C_D(1 + C_D/C_0) \right]
\]
Position-to-Voltage Conversion

* To sense position (i.e., displacement), use a capacitive load

\[V_O = \frac{C_v/C_D}{1 + C_v/C_D} \left(\frac{(\omega_d)^2}{s^2 + \left(\frac{\omega_d}{q}\right)s + (\omega_d)^2} \right) \]

DC Gain

To maximize gain \(\rightarrow 1\), need \(C_v \ll C_D\).

Low-Pass Biquad

Note: Can use similar short-cut to the R case.

1. Get DC response \(\rightarrow C_v\)'s dominate.
2. Then:

\[V_O(s) = \frac{(DC \text{ Gain})}{s} \cdot \Theta(s, \omega_d, Q) \cdot \omega_d^2 \]

Problems With Pure-C Position Sensing

* To sense position (i.e., displacement), use a capacitive load

\[V_O = \frac{C_v/C_D}{1 + C_v/C_D} \left(\frac{1}{s} \cdot \Theta(s, \omega_d, Q) \cdot \omega_d^2 \right) \]

Integration yields

displacement.

To maximize gain, minimize \(C_v\).

\(\Rightarrow\) Problem: parasitic capacitance

\[C_v \rightarrow C_v + C_{PD} + C_{PB} \]

\[\text{DC Gain:} \quad \frac{C_v}{1 + C_v/C_D + C_{PB}} \]

Remedy: Suppress \(C_v\)

Via use of op amps.
The Op Amp Integrator Advantage

- The virtual ground provided by the ideal op amp eliminates the parasitic capacitance \(C_p \)

\[
\begin{align*}
\text{Electrode 1} & \quad i_1 \quad v_1 \\
\text{Electrode 2} & \quad i_0 \quad v_0 \\
\end{align*}
\]

Differential Position Sensing
Differential Position Sensing

- **Example:** ADXL-50

 Tethers with fixed ends

 ![C1](image1) ![C2](image2)

 Fixed Electrodes

 \[V_p \]

 \[V_o \]

 \[-V_p \]

 Proof Mass

 Sense Finger

 Suspension Beam in Tension

 Issues: Parasitic Capacitance

 \[V_o = -V_p + \frac{(2V_p)C_1C_2}{C_1 + C_2} \]

 \[V_o = \frac{V_o}{C_1 + C_2} \]

 As before, \(C_p \) reduces gain – Use op amp!

Buffer-Bootstrapped Position Sensing

- **Bootstrap the ground lines around the interconnect and bond pads**
 - No voltage across \(C_p \)
 - It's effectively not there!

 Includes capacitance from interconnects, bond pads, and \(C_{gs} \) of the op amp

 \[CP \]

 \[CGd \]

 \[CGd = \text{gate-to-drain capacitance of the input MOS transistor} \]

 Unity Gain Buffer

 Interconnect

 Ground Plane

 \(1x \)
Effect of Finite Op Amp Gain

\[+V_p \]

\[-V_p \]

\[C_{gd} \]

\[C_p \]

\[V_0 \]

\[\frac{N_0}{N_i} = \frac{A_0(N_i - N_p)}{A_0(N_i - N_p)} \rightarrow \frac{N_0}{N_i} = \frac{A_0}{1 + A_0} \]

\[G = \frac{N_0}{N_i} = 1 \]

\[C_{eff} = \frac{C_p}{1 + A_0} \]

\[\Rightarrow C_{eff} = \frac{2pF}{101} = 20pF \]

\[\Rightarrow \text{Not negligibly small with ADXL-50 so C_{eff} ~ 100pF}! \]

Integrator-Based Diff. Position Sensing

\[+V_p \]

\[-V_p \]

\[C_F \]

\[R_2 \]

\[R_2 \gg \frac{1}{sC_F} \]

\[V_0 \]

\[R_o \]

\[\text{Can drive next stage's} \]

\[\text{without interference to transfer function!} \]

\[\frac{N_0}{V_p} = \frac{C_2}{C_F} \]

\[\Rightarrow \text{A seemingly perfect differential sensor/amplifier output!} \]

\[\text{...but only when the op amp is ideal...} \]