HSPICE

Solution for Linear Network

With Gaussian elimination

$$\begin{pmatrix}
0.2 & 0 & -0.1 & -0.1 \\
0 & 0.2 & -0.2 & 0 \\
-0.1 & -0.2 & 0.5 & -0.2 \\
0 & 0 & -0.2 & 0.2
\end{pmatrix}
\begin{pmatrix}
V_0 \\
V_1 \\
V_2 \\
V_3
\end{pmatrix} = \begin{pmatrix}
-3 \\
3 \\
0 \\
0
\end{pmatrix}$$

$$\left(\begin{array}{cccc}
0.2 & -0.2 & 0 \\
-0.2 & 0.5 & -0.2 \\
0 & -0.2 & 0.2
\end{array}\right)$$

$$\begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} V_0 \text{ ground}$$

$$\begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

Iteration for Nonlinear Network

HSPICE Data Flow

Netlist Structure

```
Title
            ---- → Title Statement - Ignored during simulation
  Controls ----\rightarrow .option nomod nopage
                           .tran 1 10
                           .print v(5) i(r1)
                    --\rightarrow .plot v(3) v(in)
                           * voltage sources
                  T = - \rightarrow v3 3 0 dc 0 ac 0 0 pulse 0 1 0 0.1 0.1 4 8
   Sources
                  L = - > vin in 0 sin(0 2 10k 0.5 0)
                            * Components
 Components ---- c2 2 0 2pf
                            m1 1 2 3 4 mod L=10u W=30u
                       -> x3 2 3 INV
                            *Model & Subcircuit
Models & Subckts ---→ .model... or .LIB or .Subckt
      End file ----\rightarrow .end
```

Element Names

```
Capacitor
          Diode
E,F,G,H
          Dependent Current and Voltage Controlled Sources
          Current
          JFET or MESFET
Κ
          Mutual Inductor
          Inductor
М
          MOSFET
Q
          BJT
R
          Resistor
O,T,U
          Transmission Line
          Voltage Source
          Subcircuit Call
X
```

Units and Scale Factors

Units:

- R Ohm (e.g. R1 n1 n2 1K)
- C Farad (e.g. C2 n3 n4 1e-12)
- L Henry (e.g. L3 n5 n6 1e-9)

Scale Factors :

```
F 1e-15
P 1e-12
N 1e-9
U 1e-6
M 1e-3
```

```
K 1e3
Meg 1e6
G 1e9
T 1e12
DB 20log<sub>10</sub>
```

Examples: 1pF 1nH 10Meg Hz vdb(v3)

Technology Scaling : All Length and Widths are in Meters

Using .options scale=1e-6

L=2 W=100

Node Naming Conventions

- Either Names or Numbers (e.g. data1, n3, 11,)
- 0 (zero) is <u>Always</u> Ground
- Trailing Alphabetic Character are ignored in Node Number, (e.g. 5A=5B=5)
- All nodes are assumed to be local
- Node Names can be may Across all Subcircuits by a .GLOBAL Statement (e.g. .GLOBAL VDD VSS)

.SUBCKT Statement

```
.SUBCKT subname n1 <n2 n3...> <param=val...>
.ENDS [subname]
```

Example:

```
.SUBCKT INV IN OUT WN=2u WP=8u
   OUT IN VDD VDD P L=0.5u W=WP
   OUT IN 0
                  N L=0.5u W=WN
              0
   OUT
        4 1K
     4 5 10K
.ENDS INV
*
X1
   1 2 INV
              WN=5u
                    WP=20u
X2 2
         INV
              WN=10u WP=40u
```

Sources

Transient Sources - PULSE

Syntax :

PULSE (V1 V2 < Tdelay Trise Tfall Pwidth Period >)

Example :

Vin 1 0 PULSE (0V 5V 10ns 10ns 10ns 40ns 100ns)

Transient Sources - SIN

Syntax :

SIN (Voffset Vacmag < Freq Tdelay Dfactor >)

Voffset + Vacmag* $e^{-(t-TD)}$ *Dfactor * $sin(2\pi Freq(t-TD))$

Example :

Vin 3 0 SIN (0V 1V 100Meg 2ns 5e7)

Transient Sources - PWL

Syntax :

```
PWL (<t1 v1 t2 v2 .....> <R<=repeat>> <Tdelay=delay>)
$ R=repeat_from_what_time TD=time_delay_before_PWL_start
```

Example :

V1 1 0 PWL 60n 0v, 120n 0v, 130n 5v, 170n 5v, 180n 0v, R 0 V2 2 0 PL 0v 60n, 0v 120n, 5v 130n, 5v 170n, 0v 180n, R 60n

AC and DC Sources

Example of DC Sources

Example of AC Sources

V1 1 0 DC=5V

V2 2 0 5V

13 3 0 5mA

V4 4 0 AC=10V, 90

V5 5 0 AC 1.0 180

Example of Mixed Sources

V6 6 0 5V AC=1V, 90

V7 7 0 0.5V AC 1.0 SIN (0 1 1Meg)

Dependent Sources

```
Voltage Controlled Voltage Sources (VCVS) --- E Elements
Voltage Controlled Current Sources (VCCS) --- G Elements
Current Controlled Voltage Sources (CCVS) --- H Elements
Current Controlled Current Sources (CCCS) --- F Elements
```

```
E(name) N+ N- NC+ NC- (Voltage Gain Value)

Eopamp 3 4 1 2 1e6

Ebuf 2 0 1 0 1.0
```

Analysis Type

Analysis Type

■ DC Operating Point : First Calculated for ALL Analysis Types

.OP .IC .NODESET

DC Sweep & DC Small Signal Analysis :

.DC .TF .PZ .SENS

AC Sweep & Small Signal Analysis :

.AC .NOISE .DISTO .SAMPLE .NET

Transient Analysis:

.TRAN .FOUR (UIC)

DC Sweep

```
.DC var1 start1 stop1 incr1 < var2 start2 stop2 incr2 > )
.DC var1 start1 stop1 incr1 < SWEEP var2 DEC/OCT/LIN/POI np start2 stop2 > )
```

Example:

```
.DC VIN 0.25 5.0 0.25

.DC VDS 0 10 0.5 VGS 0 5 1

.DC TEMP -55 125 10

.DC TEMP POI 5 0 30 50 100 125

.DC xval 1k 10k 0.5k SWEEP TEMP LIN 5 25 125
```

Transient and AC Analysis

.TRAN tincr1 tstop1

.TRAN 1NS 100NS

.AC DEC/OCT/LIN/POI np fstart fstop

.AC DEC 10 1K 100MEG

Element Models

LSHUNT 23 51 10UH 0.01 1 IC=15.7mA

K4 Laa Lbb 0.9999

Graphic Tool - AWAVES

AWAVES Window

Data names

Result Browser

Measurement

On window measurement function

Multiple Panels

Multiple panels can be displayed on window

Maximum number of panels displayed depends on window size

Waveforms can be dragged and drop into other panels

Zoom In

