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PROBLEM SET #1 

Issued: Thursday, Sept.2, 2010 

Due (at 7 p.m.): Tuesday, Sept. 14, 2010, in the EE C245 HW box in 240 Cory. 

This homework assignment is intended to give you some early practice playing with dimensions 
and exploring how scaling can greatly improve certain performance characteristics of mechanical 
systems. Don’t worry at this point if you do not understand fully some of the physical 
expressions used. Some of them will be revisited later in the semester. 

 

1. Scaling to microscopic dimensions provides benefits in many sensing applications such as 
pressure and temperature measurement, EM radiation detection, linear acceleration and 
rotation rate measurement, strain sensing, chemical sensing, and biological sample analysis.  
For this problem we will focus on the behavior of a resonant cantilever gas sensor. 

(a) Consider the fixed-free beam (cantilever) illustrated in Figure 1.  

 

Figure 1 

When excited in its fundamental resonant mode, and given that L >> h, the tip of the 
cantilever will vibrate at a frequency given by 
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where E and ρ are the Young’s modulus and density of the structural material, and 
dimensions are given in Figure 1. If all dimensions are scaled down by a factor of 100, by 
what factor will the resonant frequency increase? This is an easy exercise intended solely 
to give perspective on how scaling affects resonant frequency. (5%) 

(b) Assume that a 150 mm (6″) diameter wafer has a useful area of 100 mm × 100 mm upon 
which cantilever sensors can be fabricated. (Here, the edges of the wafer are for handling, 
so do not yield working devices.) A dicing saw is used to cut the wafer into individual dies 
and the width of each cut is 50 µm. Each sensor requires a square unit cell with a 
minimum area of 9L

2. The cost per sensor is given by ���, �� = �$3000 +  $1 × � +$2 × ��/� , where n is the number of cuts through the wafer and d is the number of dies. 
Here, the fixed $2 cost per sensor is due to post processing, packaging and testing costs. 
Assume that the minimum die size that can be reliably handled is 1 mm × 1 mm. What is 
the lowest achievable fabrication cost per sensor (to the nearest cent) and what is the 
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corresponding maximum cantilever size (to the nearest ten microns)? Hint: it would be 
helpful to define d(n) and to find n. (15%) 

(c) The cantilever is to be used as a sensor for detecting a harmful chemical agent. A small 
area on the tip of the cantilever is coated with a special polymer to which a monolayer of 
the chemical agent can bond. When this bonding occurs, the tip’s mass increases slightly 
and there is a corresponding tiny negative shift in the resonant frequency. Recall that 

� = ��/� for a simple mass/spring oscillator. Assuming the shift in frequency is only 

due to the change in the mass of the tip, will the fractional frequency shift (∆f/f) be greater 
for a thicker cantilever (larger h) or a thinner cantilever (smaller h)? Why? (10%) 

 

2. The general equation for the deflection of a thin stretched membrane due to applied pressure, 
such as shown in Figure 2, can be expressed as the following differential equation: 
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where N is the tensile stress causing the membrane to stretch; P is the (constant and uniform) 
applied pressure; z is the displacement function, and x,y are the planar spatial coordinates. 
You might not understand all of these variables right now, but you will deeper into the course. 
For now, just treat this problem as a math problem, designed to jog your memory on how to 
solve differential equations. 

Find a general form of the solution to the differential equation above that gives the static 
displacement shape of the membrane. This should be in terms of x, y, the side length L, and 
stress parameters N and P. It should be expressed as Z = f(x,y), where Z is a function 
describing the mode shape. You need not determine the values of the constants, but you 
should show them as variables (the same way you’ve done before in math courses). (35%) 

Hint #1: 

Assume a solution "�#, $� = ∑ 678�sin 97#��sin :8$�;< , then determine 678, 97 , :8. 

Hint #2: 

Recall = sin�>#� sin�?#� �#@
A = 0 for all integers > ≠ ?. How can you use this to reduce 

an infinite series to a single element? 

 

Figure 2  
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3. Suppose a step-function voltage VA were suddenly applied across the anchors of a 2 µm thick 
polysilicon beam and proof mass setup as shown in Figures 3 and 4, which also provide lateral 
dimensions. For polysilicon, assume the following material properties: Young’s modulus E = 
150 GPa, density ρ = 2,300 kg/m3, Poisson ratio ν = 0.226, sheet resistance = 10 Ω/□, specific 
heat = 0.77 J/(g·K), and thermal conductivity = 30 W/(m·K). 

(a) With what time constant will the proof mass reach its steady-state temperature after the 
voltage VA steps from 0V to 1V? Give a formula and a numerical answer with units. (10%) 

(b) If the final step function value of VA is 1V, what is the steady-state temperature of the 
proof mass? Give a formula and a numerical answer with units. (20%) 

(c) What effect do you think the applied voltage has on the resonant frequency of the structure 
in the z-direction (into the page)? Give a brief qualitative explanation. (5%) 

 

 

Figure 3 

 

Figure 4 


