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& & Classic Spinning Gyroscope
B e e L T B et L
* A gyroscope measures rotation rate, which then gives
orientation — very important, of course, for navigation
* Principle of operation based on conservation of momentum
* Example: classic spinning gyroscope
Rotor will preserve its angular
momentum (i.e., will maintain
GYI"OSCOPCS its axis of spin) despite
rotation of its gimbled chassis
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5 Vibratory Gyroscopes
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* Generate momentum by vibrating structures
* Again, conservation of momentum leads to mechanisms for
measuring rotation rate and orientation
* Example: vibrating mass in a rotating frame
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frame = constant
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s  Basic Vibratory Gyroscope Operation
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Principle of Operation LK
* Tuning Fork Gyroscope: =

Input Driven
Rotation ~ Vibration
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i Basic Vibratory Gyroscope Operation
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W Vibratory Gyroscope Performance
" UCBerkeley
Princi . ~ - -
rmcuple of Operation B mi & ) e
* Tuning Fork Gyroscope: X=—Ft= =— a =2vxQ
k / ko N \
Input Driven Beam Beam Sense Driven

Rotation «_ C]jé Vibration Mass stiffness Frequency Velocity
/ @f,
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* To maximize the output signal x,

a. need:
Coridlis % Large sense-axis mass
(Sense) % Small sense-axis stiffness
Response % (Above together mean low
resonance frequency)
% Large drive amplitude for large
grive;\ velocity (so use comb-
- rive
?ﬁ:‘;’ﬂ,‘: z % If can match drive freq. to
>y sense freq., then can ag;\plify
- <
“ output by Q times— - =
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&  MEMS-Based Tuning Fork Gyroscope
y
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Tuning

Drive Electrodes

Electrode

Tuning
Electrodes

Tuning Fork Gyroscope

Polarizer

Rb/Xe Cell Quadrature Cancellation Sense
Electrodes Electrodes
~ Photodiode * In-plane drive and sense modes pick up
ot z-axis rotations
Nuclear . . .
Magnetic 1mm Mode-matching for maximum output
Resonance / sensitivity .
: Gyro [NIST] 1mm * From [Zaman, Ayazi, et al, MEMS'06] Sense Mode
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i MEMS-Based Tuning Fork Gyroscope & MEMS-Based Tuning Fork Gyroscope
!nﬁ@&ﬂ@[&* 1" UGBerkeley
el VT Drive Voltage * Drive and sense axes must be stable or at least track one
> s I / Signal another to avoid output drift
Ve Sense
Electrodes

q Q Sense
{7

Problem: if drive

Drive
/ Electrode
(-) Sense orve Drive .\ Ennon | frequency changes
Output ‘ Electrode = relative to sense
Current | ) frequency, output
' i Drive i changes = bias drift
Oscillation # o Drive = =
b Sustaining Tuning ectrode
(+) Sense P — Amplifier Electrodes | D‘\‘
rive
Drive __—Sense
Response

Response

2= _ TransR Electrodes Electrodes
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Output—] Sonse
Current B i N

Differential Quadrature Cancellation Sense

Kmplitude
—
L

L —. o Gemedsdsior o ASeF? Need: small or matched drive
o mplitier and sense axis temperature >
[Zaman, Ayazi, et al, MEMS'06] coefficients to suppress drift f(@T,) f, (@T,) o
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Mode Matching for Higher Resolution

[ UCBerke oy s —
* For higher resolution, can try to match drive and sense axis

resonance frequencies and benefit from Q amplification

Sense
Electrodes

Drive
Electrode

Quadrature Cancellation
Electrodes

Drive
Electrode

-

Drive
A

Need: small or matched drive
and sense axis temperature
coefficients to make this work

Drive
Response

b

Problem: mismatch
between drive and
sense frequencies =
even larger drift!
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__—Sense
Response

xmplitude

EE

€245 Introduction Yo MEMS Design

““LecM 15

f,(@T) f,(@T) o

C. Nguyen 11/18/08 13

EE C245

Copyright © 2010 Regents of the University of California

Iy

Nuclear Magnetic Res. Gyroscope

CiBerkeley

* The ultimate in miniaturized spinning gyroscopes?

% from CSAC, we may now have the technology to do this

Atoms  Aligned

Nuclear Spins
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Better if this is a noble gas nucleus
(rather than e-), since nuclei are
heavier = less susceptible to B field

Soln: Spin polarize Xe'2? nuclei by
first polarizing e- of Rb% (a la
CSAC), then allowing spin exchange

3.2mm

Challenge: suppressing
the effects of B field
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i Issue: Zero Rate Bias Error
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* Imbalances in the system can lead to zero rate bias error
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Drive _—
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Tuning
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Electrodes

Electrodes

Electrodes

Quadrature Cancellation

Tuning

“Electrodes

Mass imbalance
= off-axis motion
of the proof mass

Drive imbalance
= off-axis motion
of the proof mass

Output signal in
phase with the

Quadrature output

signal that can be

confused with the
Coriolis acceleration |
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P MEMS Based Tuning Fork Gyroscope
"
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Drive Voltage

/ Signal

Rate
Qut

[Zaman, Ayazi, et al, MEMS'06]
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