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Lecture Outline

• Reading: Senturia, Chpt. 3; Jaeger, Chpt. 2, 3, 6
Example MEMS fabrication processes
Oxidation
Film Deposition

Evaporation
Sputter deposition
Chemical vapor deposition (CVD)
Plasma enhanced chemical vapor deposition (PECVD)
Epitaxy
Atomic layer deposition (ALD)
Electroplating
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MEMS Fabrication
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Making Mechanical Devices
• How best does one make a 

mechanical product?
• Assembly line production?

Pick and place parts
Used for many macroscopic 
mechanical products
Robotic automation greatly 
reduces cost

• Problem: difficult to do this with 
MEMS-scale parts (but not 
impossible, as we’ll soon see …)

• Solution: borrow from integrated 
circuit (IC) transistor technology

Use monolithic wafer-level 
fabrication methods
Harness IC’s batch methods, 
where multiple devices are 
achieved all at once

Automobile Assembly Line

CMOS Integrated Circuit Wafer
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Silicon Substrate

Polysilicon Surface-Micromachining

• Uses IC fabrication 
instrumentation exclusively

• Variations: sacrificial layer 
thickness, fine- vs. large-
grained polysilicon, in situ
vs. POCL3-dopingSilicon Substrate

Free-
Standing

Polysilicon
Beam

Hydrofluoric
Acid

Release
Etchant

Wafer

300 kHz Folded-Beam 
Micromechanical Resonator 

Nitride
Interconnect
Polysilicon

Sacrificial
Oxide Structural

PolysilconIsolation
Oxide
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Aluminum

Electroplating: Metal MEMS
• Use electroplating to obtain 

metal μstructures
• When thick: call it “LIGA”
• Pros: fast low temp 

deposition, very conductive
• Cons: drift, low mech. Q

but may be solvable?

Nickel

Silicon Substrate

Suspended Nickel
MicrostructureElectrode

Silicon Substrate

Ti/Au

Isolation
Si3N4

Wafer

Aluminum
Release
Etchant

Photoresist
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Silicon Substrate

Glass Substrate

Bulk Micromachining and Bonding

• Use the wafer itself as the 
structural material

• Adv: very large aspect 
ratios, thick structures

• Example: deep etching and 
wafer bonding

Silicon SubstrateSilicon Substrate

Glass Substrate

Silicon Substrate

Metal Interconnect
Anchor

Movable
Structure Electrode

Micromechanical
Vibrating Ring Gyroscope

1 mm

Microrotor
(for a microengine)

[Najafi, Michigan] [Pisano, UC Berkeley][Pisano, UC Berkeley]
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Oxidation
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Thermal Oxidation of Silicon

• Achieved by heating the silicon wafer to a high temperature 
(~900oC to 1200oC) in an atmosphere containing pure oxygen 
or water vapor

• Enabling reactions:

For dry oxygen: For water vapor:

Si + O2 → SiO2

Schematically:

Si + 2H2O → SiO2 + 2H2

High T (~900oC – 1200oC)

In dry O2
or

Water vapor

Si Wafer Si Wafer

56%

44%

→ →
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Oxidation Modeling

(1) Initially:  (no oxide @ surface)

(2) As oxide builds up:

Growth rate governed more 
by rate of diffusion to the 
silicon-oxide interface

gas stream

Si
oxide

Reactant must diffuse to Si 
surface where the oxidation 
reaction takes place

gas stream

Si
Growth rate determined by 
reaction rate @ the surface
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Oxidation Modeling (cont.)
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Oxidation Modeling (cont.)

At the Si-SiO2 interface:
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Oxidation Modeling (cont.)
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Oxide Thickness Versus Time
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[Xi = initial oxide thickness]

Result:
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Oxidation Modeling (cont.)
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For shorter times:

Taylor expansion (first 
term after 1’s cancel)

oxide growth 
limited by reaction 
at the Si-SiO2
interface

linear growth rate constant

For long oxidation times: oxide growth diffusion-limited

τ>>t Parabolic 
rate constant
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Oxidation Rate Constants

• Above theory is great … but usually, the equations are not 
used in practice, since measured data is available

Rather, oxidation growth charts are used
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Oxidation Growth Charts
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Using the Oxidation Growth Charts

Example:
• <100> silicon
• Starting oxide 
thickness: Xi=100nm

•Want to do wet 
oxidation @ 1000oC to 
achieve Xox=230nm

•What is the time t
required for this?

Growth Chart for <100> Silicon
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Factors Affecting Oxidation

• In summary, oxide thickness is dependent upon:
1. Time of oxidation
2. Temperature of oxidation
3. Partial pressure of oxidizing species (∝ No)

• Also dependent on:
4. Reactant type:

Dry O2
Water vapor faster oxidation, since water has a 

higher solubility (i.e., D) in SiO2 than O2
5. Crystal orientation:

<111> ← faster, because there are more bonds            
available at the Si-surface

<100> ← fewer interface traps; smaller # of 
unsatisfied Si-bonds at the Si-SiO2 interface
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Factors Affecting Oxidation

6. Impurity doping:
P: increases linear rate const.

no affect on parabolic rate constant
faster initial growth → surface reaction rate limited

B: no effect on linear rate const.
increases parabolic rate const.
faster growth over an initial oxide → diffusion faster
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Thin Film Deposition
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Thin Film Deposition

•Methods for film deposition:
Evaporation
Sputter deposition
Chemical vapor deposition (CVD)
Plasma enhanced chemical vapor deposition (PECVD)
Epitaxy
Electroplating
Atomic layer deposition (ALD)

Evaporation:
•Heat a metal (Al,Au) to the point of vaporization
• Evaporate to form a thin film covering the surface of the Si 
wafer

• Done under vacuum for better control of film composition
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Evaporation

2Pd 2
kT path  freemean 
π

λ ==

Filament Evaporation System: 

Vacuum
Pump

wafer

+ -

W filament Al staples

k = Boltzmann Constant
T = temperature
P = pressure
d = diameter of gas molecule

1. Pump down to vacuum      
→ reduces film 
contamination and allows 
better thickness control

2. Heat W filament → melt 
Al, wet filament

3. Raise temperature →
evaporate Al
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Evaporation (cont.)

• λ can be ~60m for a 4Å particle at 10-4 Pa (-0.75 μTorr)
thus, at 0.75 μTorr, get straight line path from Al 
staple filament to wafer

Problem:  Shadowing & Step Coverage

Get an open

Source

Source

Problem: line of sight deposition
Solns:  

i. Rotate water during 
evaporation

ii. Etch more gradual 
sidewalls

Better Solution: forget 
evaporation → sputter 
deposit the film!
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Sputter Deposition

• Use an energetic plasma to dislodge atoms from a material 
target, allowing the atoms to settle on the wafer surface 

Vacuum
Pump

wafer

Not as low a 
vacuum as 
evaporation 
(~100 Pa)
(750 mTorr)

Ar+ Ar+
plasma

Target 
(Al, SiO2, Si2N4, 
ZnO, Ti, …)
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Sputter Deposition Process

• Step-by-step procedure:
1. Pump down to vacuum

2. Flow gas (e.g., Ar)
3. Fire up plasma (create Ar+ ions) → apply dc-bias (or RF 

for non-conductive targets)
4. Ar+ ions bombard target (dislodge atoms)
5. Atoms make their way to the wafer in a more random 

fashion, since at this higher pressure, λ ~60μm for a 4Å
particle; plus, the target is much bigger

• Result: better step coverage!

Torr 0075012.0
atm

Torr 760 atm 109.8  Pa 1  Pa) 100(~ 6- =⎟
⎠
⎞

⎜
⎝
⎛×=→

7.5 mTorr
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Problems With Sputtering

1. Get some Ar in the film
2. Substrate can heat up

up to ~350oC, causing nonuniformity across the wafer
but it still is more uniform than evaporation!

3. Stress can be controlled by changing parameters (e.g., 
flow rate, plasma power) from pass to pass, but 
repeatability is an issue

• Solution: use Chemical Vapor Deposition (CVD)
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Chemical Vapor Deposition (CVD)

• Even better conformity than sputtering
• Form thin films on the surface of the substrate by thermal 
decomposition and/or reaction of gaseous compounds

Desired material is deposited directly from the gas phase 
onto the surface of the substrate
Can be performed at pressures for which λ (i.e., the 
mean free path) for gas molecules is small
This, combined with relatively high temperature leads to

Types of films: polysilicon, SiO2, silicon nitride, SiGe, 
Tungsten (W), Molybdenum (M), Tantalum (Ta), Titanium 
(Ti), …

Excellent Conformal 
Step Coverage!
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The CVD Process

Wafer

Gas Flow – Gas Stream(a)

Energy required to drive reactions supplied 
by several methods:  Thermal (i.e., heat), 
photons, electrons (i.e., plasma)

(b)

(c) (d)

(e) (e)

(d)

Reactant gas (+ inert diluting gases) are 
introduced into the reaction chamber

Gas species move 
to the substrate

Reactants adsorb 
onto the substrate

Reaction by-products 
desorbed from surface

Atoms migrate 
and react 
chemically to 
form films

This determines 
the ultimate 
conformality of 
the film (i.e., 
determines step 
coverage)


