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EE C245 - ME C218
Introduction to MEMS Design
Fall 2010

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 1: Admin & Overview

w  Instructor: Prof. Clark T.-C. Nguyen
] e [
* Education: Ph.D., University of California at Berkeley, 1994
* 1995: joined the faculty of the Dept. of EECS at the

University of Michigan

* 2006: (came back) joined the faculty of the Dept. of EECS
at UC Berkeley
* Research: exactly the topic of this course, with a heavy
emphasis on vibrating RF MEMS
* Teaching: (at the UofM) mainly transistor circuit design
courses; (UC Berkeley) 140, 143, 243, 245
* 2001: founded Discera, the first company to commercialize
vibrating RF MEMS technology
* Mid-2002 to 2005: DARPA MEMS program manager
% ran 10 different MEMS-based programs
% topics: power generation, chip-scale atomic clock, gas
analyzers, nuclear power sources, navigation-grade gyros,
on-chip cooling, micro environmental control
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Course Overview
L] e [
Goals of the course:
% Accessible to a broad audience (minimal prerequisites)
% Design emphasis
* Exposure to the techniques useful in analytical design
of structures, transducers, and process flows
% Perspective on MEMS research and commercialization
circa 2010

* Related courses at UC Berkeley:
% EE 143: Microfabrication Technology
% EE 147: Introduction to MEMS
% ME 119: Introduction to MEMS (mainly fabrication)
% BioEng 121: Introduction to Micro and Nano
Biotechnology and BioMEMS
% ME C219 - EE C246: MEMS Design

* Assumed background for EE C245: graduate standing in
engineering or physical/bio sciences
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5 Course Overview
Ry 1

The mechanics of the course are summarized in the course
handouts, given out in lecture today
Y Course Information Sheet
* Course description
* Course mechanics
* Textbooks
* Grading policy
% Syllabus
* Lecture by lecture timeline w/ associated reading
sections
* Midterm Exam: tentatively set for Thursday, Oct. 28
* Final Exam: Friday, Dec. 17, 7-10 p.m.
* Change this Final Exam time?
* Project due date TBD (but near semester’'s end)
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Lecture Outline
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* Reading: Senturia, Chapter 1
* Lecture Topics:

% Definitions for MEMS

Y, MEMS roadmap

% Benefits of Miniaturization

i MEMS: Micro Electro Mechanical System
I UGBerkeley

* A device constructed using micromachining (MEMS) tech.

* A micro-scale or smaller device/system that operates mainly
via a mechanical or electromechanical means

* At least some of the signals flowing through a MEMS device
are best described in terms of mechanical variables, e.g.,
displacement, velocity, acceleration, temperature, flow

=
T i

b

Input: Output:
voltage, current voltage, current

acceleration, velocity o MEMS O acceleration, velocity
light, heat, ...

light, heat ...

Transducer to
Convert Control
to a Mechanical
Variable (e.g.,
displacement,
velocity, stress,
heat, ...)

! [Wu, UCLA]
Control: :
voltage, current ' f . g b §
acceleration o ; | -
velocity »al
light, heat, ... \ m— =

Angle set by mechanical means
to control the path of light
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Other Common Attributes of MEMS

L

ucBerkeley
* Feature sizes measured in microns or less  njafi, Michigan]
80 mm Gimballed, Spinning Micromechanical

Macro-Gyroscope Vibrating Ring Gyroscope
— '

——

'/ ~Signal Conditioning Circuits

* Merges computation with sensing and actuation to change the
way we perceive and control the physical world
* Planar lithographic technology often used for fabrication
% can use fab equipment identical to those needed for IC's
% however, some fabrication steps transcend those of
conventional IC processing

o Bulk Micromachining and Bonding

Micromechanical
Vibrating Ring Gyroscope
—— '

——

* Use the wafer itself as the
structural material

* Adv: very large aspect
ratios, thick structures

* Example: deep etching and
wafer bonding

1 mni™
[Najafi, Michigan]

Glass Substrate f \

/ -
Metal Interconnect \ Mlc.rorotor.
Anchor (for a microengine)
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5 Surface Micromachining
[ UG;Berkeley
Structural Material
Release Etch  (e.g., polysilicon, nickel, etc.) Sacrificial Oxide
Barrier \

Hydrofluoric
Acid
Release
Solution

L
Resonator Beam [ ]
|
r— -
V——
8 (L pwell

ilicon Substrate

Silicon Substrate

* Fabrication steps compatible with planar IC processing

Single-Chip Ckt/MEMS Integration
PIHIERTE= ..
* Completely monolithic, low phase noise, high-Q oscillator
(effectively, an integrated crystal oscillator)

=
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| ——m

Anchors _ | i l e 1»"';;
Ay AT -

07 cor Fen 0l [Nguyen, Howe 1993]

Oscilloscope
Output
Waveform

* To allow the use of >600°C processing temperatures,
tungsten (instead of aluminum) is used for metallization
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i Technology Trend and Roadmap for MEMS
RUCEEET e
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Example: Micromechanical Accelerometer

1 UGB 1.

The MEMS Advantage—— —
% >30X size reductig '"Y mass means
small output = need

accelerometer mec

k k integrated transistor -
% allows integration y circuits to compensate |=; ]

=]

Basic Operation Principle

Xoc F,=ma

y - Displacement

& Spring

Inertial Force

h Proof Mass

Acceleration

Digital Micromirror
Device (DMD)

- OMM 8x8 Optical
Cross-Connect Switch

Adv.: faster switching, low
loss, larger networks

i-STAT 1
Weapons, Caliper

Safing, Arming,

Jgrailcu
Systems

TI Digital Micromirror Device

. |_ Adv.: low loss, fast
105 switching, high fill factor

1 1
108 104
ber of Mechanical Components
increasing ability to sense and act

Adv.: small size, small
sample, fast analysis speed
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Benefits of Size Reduction: MEMS
B 1
* Benefits of size reduction clear for IC's in elect. domain
% size reduction = speed, low power, complexity, economy

* MEMS: enables a similar concept, but ..
MEMS extends the benefits of size reduction
beyond the electrical domain

-

Performance enhancements for application
domains beyond those satisfied by electronics
in the same general categories

Speed m) Frequency A , Thermal Time Const.

Power Consumption mE)> Actuation Energy ¥ , Heating Power ¥

Complexity mm)> Integration Density A , Functionality 4

Economy mm) Batch Fab. Pot. A (esp. for packaging)
Robustness » g-Force Resilience N
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