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Lecture Module 8: Microstructural Elements
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* Reading: Senturia, Chpt. 9

* Lecture Topics:
% Bending of beams
% Cantilever beam under small deflections
% Combining cantilevers in series and parallel
% Folded suspensions
% Design implications of residual stress and stress gradients
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Bending of Beams

Tﬁ Beams: The Springs of Most MEMS

I UGBerkeley
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Springs and suspensions very common in MEMS

% Coils are popular in the macro-world; but not easy to
make in the micro-world

% Beams: simpler to fabricate and analyze; become
“stronger” on the micro-scale — use beams for MEMS

Comb-Driven Folded Beam Actuator
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o Bending a Cantilever Beam

" UGBerkeley

Free end condition

% i
Clamped end / : v
condition: :
At x=0: / T
y=0 x' L
dy/dx = 0 Z | |
| |

v
X

* Objective: Find relation between tip deflection y(x=L_) and
applied load F

* Assumptions:
1. Tip deflection is small compared with beam length
2. Plane sections (normal to beam's axis) remain plane and
normal during bending, i.e., “pure bending”
3. Shear stresses are negligible

ﬁ-w Reaction Forces and Moments

I UCBerkeley

HMoment due 4o F, hee:
MI= FL

Howent due 4o F, hew :
M= FlL-x)

For 24uilitbaum: M= Hy= F(ex)
Vs < F

(Senturia 3)«: e;qmzrl;'u')
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Moment

=N

. Sign Conventions for Moments & Shear Forces
1]

&E@Mv7
Positive Negative

(+) moment leads to

z deformation with a (+)

T ‘( radius of curvature
||

4 T (-) moment leads to

I | '! y Q m ldeformaﬁon with a (-)

(i.e., upwards)
radius of curvature

{

(i.e., downwards)

(+) shear forces
T \L i produce clockwise
Sh T i rotation
car
RSy N (-) shear forces
T i i T produce counter-
e clockwise rotation

I
o
;_Iﬁ::
"y

JC;Berkeley
Pordions aboe the Tensi
ne‘. MI ;f:go i ”h)} ( OO Neutral Axis - leng¥,
Uncharae/ by
Small section of Lervllhg
a beam bent in M g M
< o 0
response toa )7 )
tranverse load . h= Phidenes:
) Nete: (+) ollrection S
red / . Compression
/}4P(0°‘:@+ of 2 is deumuwand 2

Beam Segment in Pure Bending

\

Consider a segment bounded b7 o dashed lines
defiral by o0

Fortions bebw o neutnd

axis oo jnto Cokpression

At z=0: (i.e, at Ho neutnl axls) : segment length= dnc=Rel® (1)
P anyz:  segmed length = olL = (R-2)cl® @l

Ca«nlolni@ ) £0):  dL:dy—240 - dx- %d')é

Copyright © 2010 Regents of the University of California

CTN 10/12/10




EE 245: Introduction to MEMS CTN 10/12/10
Module 8: Microstructural Elements

w+ Beam Segment in Pure Bending (cont.)

ucBerkeley

Thu, Ho oxial shoin @ 2 a" 4* -
d = Origind (V"-’*"W)]a R * ®
segment length

by 4o
Thus, shrain varies lfneavl7 abnj beam
thidenass, and has g maximum vddue

T —
' e &
‘xm-b—'é " qlm *

VA ._bhlz
Of course, Here (5 a vz
(‘orl'efpdno({rv oxied stecs: ~hty

o;«?é,?

0= (4) = fengion

2(-) —> Compression,
=) P ,,,ve-\‘f""

\eJ
This gradien in ghecs thor genemkf a ;.d"
bending momerrl‘.

L

;Im‘ernal Bending Moment
- UC;Berkeley

Moment cround s Tension
dhis point

Neutral Axis

Small section of
a beam bent in < MOQ
response to a
transverse load

() vadis
L of curcadu

Compression
E&‘{ed-)ve/y, 2 :disime €/
o get e *‘eﬂd"ﬁ Vool He moment referene pt.

$Wr|‘eg"ﬁle Shees thraugh the hidney of the beam "
o

= [ W) 7—S N E”*o«zw:-(zwm)%
foree {

T Note: ) vadius of curvedure
R™TEL — (2 inernal bevding moment!

Copyright © 2010 Regents of the University of California



EE 245: Introduction to MEMS CTN 10/12/10
Module 8: Microstructural Elements

["UCBerkeley

Differential Beam Bending Equation

lortte suf geome{v-(c relationships: {Smﬂ %'4]
cos®« % — ds: dy

— 0(.(“-2-'0{76
cos©®

dw dw
tan@ : 5= = slope of beam@ O=

oy point " ™
ds - 846 — -h—:%? > R (?)
H m@: d.|dw__hn Differenhd Equadion fon

Toser " (in G R [dx™ ET | [ Jmall Angle Bcnd("lg of Beans

=
i /503

s

<=
E2
=

I
¢

(-]

tkeley

Example: Cantilever Beam w/ a
Concentrated Load
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ﬁ, Cantilever Beam w/ a Concentrated Load
" uGBerkeley,

Free end condition Fe Point
7 \ Load
Clamped end / M . : v
condition:~—_ /A £_+ ....... i I h
At x=0: / T
w=0 X L
dw/dx = 0 A . | / [
I — —
Dnfernal Moment @ Po.n"han’x: M=-F (L) J
Tus:  ofw  F E () | Clamped End R.C's: Wx:0)< 0, Zg(xw)w
e " Et free End B.Cs5: nove
Solve ocpresﬂw%ur:
= useé’z:p(m; or we tod Solufim ur= A+ BxkCx*402S, Hon apphy B.C's
FL 2 (, [ Deflection @ x due 4o  point oad
ZEI F aﬂ,h'ed at x=L

# Cantilever Beam w/ a Concentrated Load
- UC)Berkeley

I S

] >

Free end condition Fe Point
% : Load
Clamped end Mo \
condition:~——_ 2244 (4 ——— ] I h
At x=0: T
w=0 X L
dw/dx = 0 7 |
]

Maximem defoction @ ¥=1: Note Hat i genend,
s .| 3EL shires 5 a Furckion
(J'M- (3E$)F e F'(—d)(ﬁ"(?(d) = kﬂvd{hca‘hm’x.

where k. EE—I- 2 chffness @ locakion 5L
L_ E&L{Wﬂnlw%h/m
{1‘=‘—wt,31=> e Lyl // polyaikcan — E<1506%
12 c 47773
k =L (lSoG)(%)()&‘;A) o ¢ N/
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ﬁa Maximum Stress in a Bent Cantilever

[ UGBerkeley
From beface, Ha wdlus of curverture |s Given by
b 2L E (%) = maximiwl here R0
L’bccvﬂ a'f-'uo A‘l?rwl,wlen’)ﬂo:

ﬂ; d“;_f_L_ af\
<

sl

\i =0
Shain is maximived : pe
O at +uf> surfue — fendle ¢ >
@ M botfam surfae 7+ Compressive { mex’ R

3 FL 1z
[ T ]c’ é"'ax 2 E Wit EwL.’ ¢

S }—E LS Wl«" lj Maximum Shress (n 0\)
Rent Cantilever

L_hE
R zHm

N

B
(= =

o)
=
G-}

1
¢

ElEEEE R

Stress Gradients in Cantilevers
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P Vertical Stress Gradients
I UCBerkeley

Variation of residual stress in the direction of film growth
* Can warp released structures in z-direction

Stress Gradients in Cantilevers

‘= s

[:J etkeley

* Below: surface micromachined cantilever deposited at a high
temperature then cooled —> assume compressive stress

mn mewme | 00 |

Before release After release, )
but before bending . After bending

Average
stress 1 un Tension _H/» 4 Tension
= —> Oy Ox Ox
o Compression Compression
~ THR Hi2 Hi2 After which,
Compression ¥ z z z stress is
Stress after release, relieved
Stress before release but before bending After bending
But stress

Stress gradient Once released, beam gradient remains

length increases slightly >~ T': 4 o5 moment
to relieve average stress [ 4+ bends beam

Copyright © 2010 Regents of the University of California
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=  Stress 6radients in Cantilevers (cont)
[ UG;Berkeley
Find Ho vadlus of curvahee.
Pmr-('vreleq.m,&x,drfm.r ie: 0-’0;"(";%%
The Mkmt wmoment: .
(1 2.2 \
M I W d?' d 2= ng( (W2 ))J? W(z 3H ) -Pla
zo‘H
'W 9};”‘”" %»%l .?lX) g WM
Thus, Ho divs cyevatune (s: , vi oo
L, _HMx o BT _ EGYH) iEh
R ET Me R -4 20
7‘ ‘ ? 3V o :
Riaxlal Shess [I' jzWh
GGJIC'\"' . _(_’E__ H RGJ(W of [“lﬂlﬂ{'llq
=[R2 ZIH T | for a Cantilever
. Wl Shes Endiest
0= -;-_E—‘_':- = R con be wed
a-») b defermine shary gradient

Measurement of Stress Gradient
G B
* Use cantilever beams
% Strain gradient (I' = slope of strain-thickness curve)
causes beams to deflect up or down
% Assuming linear strain gradient I', z = TL%/2

=

=

= :::Z::e%m [P. Krulevitch Ph.D.]

p— —
p— ——

Copyright © 2010 Regents of the University of California



EE 245: Introduction to MEMS CTN 10/12/10
Module 8: Microstructural Elements

Folded-Flexure Suspensions

Tﬁ Folded-Beam Suspension

I UGBerkeley

'y
-
(]

Use of folded-beam suspension brings many benefits

Y Stress relief: folding truss is free to move in y-
direction, so beams can expand and contract more readily
to relieve stress

% High y-axis to x-axis stiffness ratio Folding Truss

Comb-Driven Folded Beam Actuator

Copyright © 2010 Regents of the University of California
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TABLE 4.1
Types of commonly used support conditions for beams and frames

Beam End Conditions

Displacement Force
boundary boundary
Type of support diti diti
None All, as specified

Moment is specified

Transverse force and moment

:‘.R[)E LER are specified
(vertical)
2y
= _
i § Horizontal force and bending
fza-a- 18
ROLLER

horizontal )

moment are specified

1]
==

FIXED or CLAMPED

[From Reddy, Finite
Element Method]

concentrated load F or distributed load f

%  Common Loading & Boundary Conditions
PG

Displacement equations derived for various beams with

* Gary Fedder Ph.D. Thesis, EECS, UC Berkeley, 1994

E, L3
‘? 5 Yy | cantilever [ guided-end [ fixed-fixed ]
H w eER | fsdh | o=k
Prommmerin. St o v=4gth | v=gtl |v=4ak
s=afels | 2= ol | 2= Gela it

{a) Concentrated load.

[ cantilever

guided-end | fixed-fixed |

[
¥ _ 3.fy L} A A Jy LA
5 Y=35hut | YT 28w | VS sk
_ 3 f: L* — 1 fs L} 1 f: LY
w z-:ﬁ::ﬁf z_iﬁ?’- =133 w R
fa— e ) chomeod-<Fioprd beam, (b) Distributed load.

Copyright © 2010 Regents of the University of California
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& Series Combinations of Springs

[ UG B el .
* For springs in series w/ one load

% Deflections add

% Spring constants combine like “resistors in parallel”

y(L)

Y(L) = F/k = 2 y(L) = 2 (F/k) = F(1/k_ + 1/k.)
/

—
Compliances effectively add:

1/k = 1/k, + 1/k.| -

& Parallel Combinations of Springs

I UgBerkeley

* For springs in parallel w/ one load
% Load is shared between the two springs
% Spring constant is the sum of the individual spring

constants
. P
- o P
-~ -
] -
Z x - -
- .
‘? > -
-
Y -~

Y(L) = F/k = F/k, = F,/k, = (F/2) (1/k,)

\—Cjk

>

2 k,

Copyright © 2010 Regents of the University of California
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Folded-Flexure Suspension Variants

|"UCBerkeley
* Below: just a subset of the different versions

* All can be analyzed in a similar fashion
IR FENEED

= B

=

[From Michael Judy, Ph.D. Thesis, EECS, UC Berkeley, 1994]

r )

i Deflection of Folded Flexures
I UGBerkeley
B
4 _ZG—- This equivalent to
Za . - two cantilevers of
£ length L =L/2

Composite cantilever

i free ends attach here
lil /
o ¢
%
M ™%
{ A': Lcn-k
Half of F
l absorbed in A
other half 4 sets of these pairs, each of
(symmetrical)  which gets % of the total force F

Copyright © 2010 Regents of the University of California
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"

;@E&rkelﬂy—

* From our previous analysis:

I' 2EI,

Constituent Cantilever Spring Constant

Fch 2 y Fcy2
_ e 211 — 3L —
x(y) y[ 3LJ GEIZ(LC y)

* From which the spring constant is:
F 3EI
FG kc = = 3 :
X(L) L

* Inserting L, = L/2

3EI, 24El,
ke = 3 3
(L/2) L

Overall Spring Constant

B
g -,Br',‘gl'sds * Four pairs of clamped-guided beams
K * ) % In each pair, beams bend in series
% (Assume trusses are inflexible)

* Force is shared by each pair — F, ;. = F/4

< Leg — Displeement of fwo legs add ?:‘;hm
& Hhus, springs are in Senes:
. Foar _ Fpair F\[L . L
x= _Pbac . par o D) [— + )
k k
Shitbrors_— Fpair (eglikieg) (L') ( ey Sley

of Falr Erom befove: klee: klik, = 75

A

5 F Th“;.'
I - _pair _(E 2\, f_ =£
J'I SLETE R S S (F){-EZ"E) ke  Kpt
S 24E
= k+°+= kc: L-;

Copyright © 2010

Regents of the University of California
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&q Folded-Beam Stiffness Ratios
|"UGBetkeley
Folded-beam v * In the x-direction:
suspension . 24E]|
— kx= 32
ﬁ f L
“~—W * In the z-direction:
: L % Same flexure and boundary
conditions
24El,
k, = 3
Shuttle
" *In the y-direction:
[See Senturia, §9.2] ky = M
L
Folding
# . Kk 2 Much
e Thus: Ty _ 4 L stiffer in
Anchor K, W ) | y-direction!

sl e

| Micromechanical Filter tK. Wang, Univ. of Michigan]-

Copyright © 2010 Regents of the University of California
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.E:; Folded-Beam Suspensions Permeate MEMS
[-UG;Berkeley

* Below: Micro-Oven Controlled Folded-Beam Resonator
Tem&é I"é'turre \ t:l\ '
r}img Resistor ! / -
: -—1\ PR
:.s\ x\é

T TR \\

\  Substrate
\ fgdge *

\ Micro- Pla‘f\orm

Stressed Folded-Flexures

Copyright © 2010 Regents of the University of California
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5 Clamped-Guided Beam Under Axial Load
'y

L.

Important case for MEMS suspensions, since the thin films
comprising them are often under residual stress

* Consider small deflection case: y(x) « L

& S)
< >

S>> «

Governing differential equation: (Euler Beam Equation)

4. 2.
9V _s9Y _ psx-1)
dx /‘ dx”

Axial Load  Unit impulse @ x=L

EI.

o The Euler Beam Equation

UG;Berkeley

in be Upword pressyre
Thin beam i hrcoun-lerac'f +ha
do wnwordf

N
N TNE T
Axial Stress R CoWH CoWH

* Axial stresses produce no net horizontal force: but as soon
as the beam is bent, there is a net downward force
% For equilibrium, must postulate some kind of upward load
on the beam to counteract the axial stress-derived force
% For ease of analysis, assume the beam is bent to angle =
Dowmuird Verticed Fore = 26, WH 2 am
Upwaved Fore dve % P,: o Be) b

(4
R S F,» f:(P,sznG) W (Rd6)
e =- BWRcos® l‘or : 2RWER,

Copyright © 2010 Regents of the University of California 18
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& The Euler Beam Equation
?“llli_ﬂ;@nl_(gl;@y—“.
(€ u.-eruM]=> 2R, = 20— Byr 2
9ot unH-b'gK RW, & 7«7]=" Qo> WM G Jm‘
boam displocemert Note: Use of the full
N bom: bend angle of = to
u.rm\giewdl{(eej bem:;i " ﬁi‘__ load establish conditions for

—Z .- — —_ load balance; but this
2" Er A ET witlewh returns us to case of

small displacements
WJPM foed and small angles
o % = equiv. lood accovnbrg 4n th axind
shors mfmm o to borediy Hfnecs

[@ R S Lo ((rown) g (Euler Beam Equafion]
L= -lenslm in tobeam s S<— a fore

.ﬁ-, Clamped-6uided Beam Under Axial Load

~UG;Berkeley

* Important case for MEMS suspensions, since the thin films
comprising them are often under residual stress

* Consider small deflection case: y(x) « L
z

x .
?—) e L
y j .
s ] ¢4
ﬁ w

Governing differential equation: (Euler Beam Equation)
d'y _d*
" dx /‘ dx
Axial Load  Unit impulse @ x=L

=Fo(x—L)
—

Copyright © 2010 Regents of the University of California
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Solving the ODE
BdUHEA e
Can solve the ODE using standard methods
% Senturia, pp. 232-235: solves ODE for case of point load
on a clamped-clamped beam (which defines B.C.'s)
% For solution to the clamped-guided case: see S.
Timoshenko, Strength of Materials II: Advanced Theory
and Problems, McGraw-Hill, New York, 3 Ed., 1955

* Result from Timoshenko:
_ L —2tanh(pl/2 c=1L
S>0(tension) k'=% (p )=‘y('1, )
PlS| F

L4 «=‘a§): |

i

S < 0 (compression)
P —pL+2tan(pL/2) y(x=L)
— pls] F
h

where p=‘/}‘ﬂ|

Design Implications
ll 6
* Straight flexures

% Large tensile S means flexure behaves like a tensioned
wire (for which k-1 = L/S)

% Large compressive S can lead to buckling (k-! — <)
inner beams @If b‘\"‘ .S"mlh I.f-6r %'\
* Folded flexures — P
% Residual stress ™rr Shotth egands by 4152 Ecls
only partially Quter (@ This Hon applier g Toad Fo e
released 477 w b?e:i', {f‘:" A4y
% Length from truss 9 ——
to shuttle's
centerline differs T L Compression
by L. for inner Compressive
and outer legs - N atiaet wxnaerd
@ Betm Shein:
GL AL AL" 6,_ L &Ls
M9 bz ot

Copyright © 2010 Regents of the University of California
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P Effect on Spring Constant
[ UGBerkeley

=

* Residual compression on outer legs with same magnitude of
tension on inner legs: St ih Fe pokySy

Beam Strain: &, = &, (%) . Stress Force: S =+1Eg, (%)V\/h

Shain in Hhe bagvns > Expandan of Ko Shodler=41; ]
(‘ Spring constapt”becomes: e e e,
o bl s
L L - =L hes G
?élwle/ k=l k") o s

e ;-=4[-p1;+zmn(pm)+pf-—2mnh(pm)]' Al
‘ A As|

* Remedies:
% Reduce the shoulder width L, to minimize stress in legs
% Compliance in the truss lowers the axial compression and
tension and reduces its effect on the spring constant

Copyright © 2010 Regents of the University of California



