Metrology, Modeling, and Control

EECS 290H Special Issues in Semiconductor Manufacturing

Profs. Costas Spanos & Kameshwar Poolla

 $\diamond \diamond \diamond$

Fall 2003

one model-based control

- why use it ? how does it help ?
- ingredients
- control architectures

two sensors

- general issues and tradeoffs
- temperature sensors (pyrometry, thermocouples, acoustic wave)
- pressure and flow sensors (manometers, McLeod transducer, momentum devices)
- composition sensors (OES, LIF, RGA, Mass Spectroscopy, actinometry)
- thickness sensors (reflectometry, ellipsometry)
- post-process sensing (SEM, AFM, other microscopy)

three filtering, estimation, modeling

- introduction
- control-oriented modeling
- kalman filtering
- an example : reflectometry
- parameter estimation

four run-to-run control

- introduction
- a simple scheme
- analysis
- case study : resist thickness control

five real-time control

- introduction
- case study : rapid thermal processing
- case study : reactive ion etch
- implementation issues

- Why do control ?
 - control is an *enabling technology* for the next generation of integrated electronics
 - control is a cost-effective means of *retrofitting* existing fab lines
 - importance is gaining acceptance Industry, UCB, Stanford, Michigan, CMU, Texas

- How does control help ?
 - can reduce variability in *product parameters* (ex: CD, sidewall, etc.)
 by regulating *process parameters* (ex: etch rate, bake temp, etc.)
 - can reduce time to re-calibrate a process
 (ex: etchers taken off line for routine cleaning)
 - required for effective sensor development
 - can provide early diagnostic warnings (ex: control signals)
 - can accelerate time-to-yield
 - result: higher yields & equip utilization, lower product variance with modest capital cost

• Ingredients of control

- model : control-oriented, need not be detailed or accurate
- sensors : to measure process parameters
- actuators : to change process operating point
- *reference command* : desired value (or trajectory) of process parameters
- Hierarchical control levels
 - *supervisory* : oversees commands for wafers lot-by-lot, uses SPC and response surface models,
 - *run-to-run* : command for a wafer are generated based on metrology of previous wafer
 - *real-time* : requires modern control and ID methods, accurate in situ metrology

- controller keep process parameters constant even with disturbances and using a coarse model
- this results in product parameters being regulated to constant values
- we can later map the process parameters to the product parameters to generate appropriate reference commands

two sensors

- general issues
- tradeoffs
- temperature sensors (pyrometry, thermocouples, acoustic wave)
- pressure and flow sensors (manometers, McLeod transducer, momentum devices)
- composition sensors (OES, LIF, RGA, Mass Spectroscopy, actinometry)
- thickness sensors (reflectometry, ellipsometry)
- post-process sensing (SEM, AFM, other microscopy)

- Sensors (and actuators) are key limiting factors in application of control techniques to semiconductor manufacturing
- sources of difficulty
 - implementation environment (vacuum, clean facilities, etc.)
 - perception that in-situ sensors affect process
 - ex-situ sensors can reduce throughput
 - cost of ownership
 - traditional resistance in industry

- modeling is often key part of sensing
 - physical quantity of interest may not be directly measured (ex: OES indirectly contains info about etch process state)
 - thus, sensors are based on a model of the underlying physical process

sensors = model + data

- signal processing
 - needed to reduce noise, improve bandwidth
 - difference between data and information
- problems

• other issues

- sensors require calibration
- must account for drift

- sensor fusion
- data compression

- some key tradeoffs
 - non-invasive vs. invasive
 - non-destructive vs. destructive
 - in-situ vs. ex-situ
 - speed vs. accuracy
 - noise
- bias (accuracy) vs. variance (repeatability)
 - a sensor could be inaccurate,
 - (ex: a thermocouple readings are off by $4^{\circ}K$)
 - but the sensor might have good repeatability, (ex: it is consistently off)
 - repeatability is often more important for process control
- modern filtering and estimation methods can be of great use in improved sensing software. (an example from reflectometry later)

Peltier-Seebeck effect, up to $3000^{\circ}C$

T gradient along wires of different materials develop different emf

emf measures junction T

platinum rhodium alloy, or silicon based

sensitivity $100 - 200 \mu V / {}^{\circ}K$

• problems

big problems with shield design radiative effects low signal – need amplifiers or use thermopile invasive gas T measurement is very hard, especially $< 10^{-4}$ torr

• comments

inexpensive, low driftlow bandwidthaccuracy $\approx \pm 5^{\circ}C$ at $800^{\circ}C$ where do you want to measure T ?

acoustic wave is transmitted through body surface and internal waves propagate thru body at T dependent speed interference with source gives beats beat frequency determines T

• issues

implementation difficulty invasive calibration

hot objects radiate

radiation is wavelength dependent

radiation model for black bodies (Planck's Law)

$$R_{\lambda} = \frac{37418}{\lambda^5 \left(e^{14388/\lambda T} - 1\right)}$$

 λ in microns, T in °K, R_{λ}

for non-black bodies need to account for emissivity

• issues

surface properties affect radiation multiple internal reflections emissivity is wavelength and geometry dependent can change during processing calibrations via thermocouples, difficult

• direct gauges

displacement of a solid or liquid surface capacitance manometer, McLeod pressure transducer

• indirect gauges

measurement of a gas related property momentum transfer, charge generation

• huge range of available sensors

cost

sensitivity

range

• basic idea

pressure differential causes displacement of diaphragm sense capacitance change between diaphragm and fixed electrode resolution 10^{-2} percent at 2 hertz and 10^{-3} torr

- differential pressure meters
- thermal mass flow meters

mass flow $= \frac{K}{T_1 - T_2}$ K depends on specific heat of gas etc. must be calibrated for different gases accuracy ≈ 1 sccm at flows of 40 sccm low bandwidth because of thermal inertia

- measures concentration of various species present in plasmas
- useful in various plasma etch and plasma-enhanced deposition control applications
 - $\ {\rm endpoint} \ {\rm detection}$
 - impurity detection
 - etch rate monitoring
 - uniformity measurement
- provides real-time measurements (> 1 Hz)
- simple installation on most plasma etchers.

- operation principle
 - plasmas contain ions, neutral radicals, energetic electrons
 - plasma discharge light

 $A+e \longrightarrow A^*+e, \quad A^* \longrightarrow A+h\nu$

here A^{\ast} is the excited state of particle A

- frequency of emitted light

depends on allowable energy transitions is characteristic of species sometimes there is no useful emission signature in OES (ex: SiH_3 in PECVD with silane plasma)

- optical equipment options
 - photo-detector (possibly with scanning of diffraction grating)
 - photo-diode array
 - CCD camera
 - Choice depends on number of factors frequency resolution, spatial resolution, acquisition rates, bandwidth, sensitivity, etc.

- signal Processing Issues
 - OES intensities depends on several factors in addition to species concentration, such as

Excitation probability (strongly dependent on RF power),

Optical collection efficiency (drifts over time due to residue build-up on window).

- full-spectrum OES may require data compression and noise reduction.
- signal intensity may be too weak in
 - Small area etches (vias and contact cuts in oxide)
 - Detection of trace Cu sputter targets in Al-Cu etches.

• basic idea

use a pulsed laser to excite plasma, observe induced emission laser can be tuned to cause specific excitations can detect species that have no natural emission (ex: SiH_3) can detect species in ground state

• details

Nd - YAG laser source @1064 nm used to pump tunable dye laser pulsed lasers provide much more power in short excitation phase thus emission exceeds background collection optics at 90° to source to minimize scattered light can detect and measure $CF, CF_2, SiO, SiN, BCl, Cl_2+, ...$

• issues

excellent spatial resolution (5 microns) excellent temporal resolution (100 nsec) sensitivity $10^6 - 10^8$ particles/ cm^3 complex collection optics and signal processing more complex than OES, but much more accurate requires side viewing port requires actinometry for calibration limited to species with absorption in 200 - 900 nm range

• other option – Laser absorption spectroscopy

tunable laser diode is used as source in IF range absorption is very low here, so multiple passes are needed path length is $\approx 1~{\rm Km}$ poorer resolution qualitative tool

- objective: calibrate OES/LIF signals
- basic idea

introduce known amount of inert gas B (ex: Ar)

choose wavelength in inert gas emission spectrum whose

excitation X-section, and excitation energy resembles species of interest A. Then,

$$\frac{I_a(\lambda_a)}{I_b(\lambda_b)} = K \frac{N_a}{N_b}$$

 I_a, I_b measured intensities

 $N_i =$ molar fraction of input gas i

K =actinometric constant (assumed fixed for other species also)

• issues

useful only for measurement relative species concentration

repeatability is a big issue: must ensure that emission lines go thru same optical path, uniform temporal electron densities, etc.

- used to spectrally resolve light
- operating principle
 - close parallel lines or steps etched on a surface
 - mechanically made gratings : etched glass or plastic
 - holographically patterned gratings : higher transmission, flatter response
 - modern gratings are blazed : periodic phase shifting across grating, concentrates light energy in a specific order
- performance characteristics

peak location is at $sin \theta = m \lambda / d$

resolving power
$$R = \frac{\lambda}{\Delta \lambda} = Nm$$

dispersion $D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d \cos \theta}$
Here, d = spacing, N = number of lines, m = order
 λ = wavelength of incident light, θ = viewing angle

- basic idea
 - essentially a tunable narrow-band wavelength selective optical filter
 - uses a diffraction grating

• issues

- accuracy of selected wavelength
- calibration
- efficiency (transmission \approx 10 %)
- Czerny-Turner monochromator
 - grating is rotated by a stepper drive
 - angle of rotation determines wavelength of light at exit slit
- dielectric bandpass filters
 - $-\ {\rm fixed}$ wavelength applications
 - transmission \approx 50 70 %

• photo-multipliers

very high gain photon detectors – rely on cascading resolution 0.05 photons/sec

spectral characteristic are adjustable by choice of material

• photo-diode arrays

can be used directly to measure intensity vs. wavelength lower resolution than a monochromator with pmt wider spectral coverage than monochromator with pmt light strikes a multi-channel intensifier plate and emits electrons DC bias accelerates electrons towards a phosphor target fiber optics connect to pixels (up to 1200) need to be cooled to limit thermal photo-electron emissions smaller dynamic range

• CCD arrays

similar operating principle as photo-diode arrays no multi-channel intensifier plate

- wider spatial coverage
- lower resolution
- very inexpensive

interference between light reflected from top surface and

from surfaces in underlying stack

intensity at detector is \approx sinusoidal in thickness of top layer and in wavelength

provides thickness/index/composition measurement of top layer

typically near-normal incidence

• applications

etch-rate measurement

develop-rate measurement

end-point detection

• single-wavelength

pulsed laser source is preferred

detected light is filtered at pulsing frequency to reduce noise

thickness accuracy $\pm 20 \text{\AA}$

• spectral reflectometry

broad band incoherent source for scan-wavelength

more noisy, but can solve for more unknowns (index and composition)

• issues

absolute intensity measurement is hard, need to model optics

need underlying stack geometry and indices

- multiple internal reflections
- phase shifts at stack boundaries
- surface roughness
- patterned wafers

circularly polarized incident light

 \perp and \parallel components undergo different reflections

Fresnel reflection coefficients

$$r_{12}^{\perp} = \frac{n_2 \cos \phi_1 - n_1 \cos \phi_2}{n_2 \cos \phi_1 + n_1 \cos \phi_2}$$
$$r_{12}^{\parallel} = \frac{n_1 \cos \phi_1 - n_2 \cos \phi_2}{n_1 \cos \phi_1 + n_2 \cos \phi_2}$$

received light is elliptically polarized

• issues

polarization of detected light is measured by nulling

no need to have intensity measurements

polarized light source

comments

can measure 2 quantities – typically index and film thickness spectrally and spatially resolved ellipsometry extremely accurate – index $\pm .1\%$, thickness $\pm 4\mathring{A}$ more expensive and delicate than reflectometry

• two types

flux analyzers : sample gas thru aperture partial pressure sensors : analysis in exhaust stack

• issues

recombination in mass spec tube changes indistinguishable species : (ex: CO, N_2 and Si have same amu (28)) pressure measurements are removed from processing chamber

• basic idea

special kind of mass spectrometer measures gas compositions works at low vacuum $< 10^{-5}$ torr ion beam is produced from gas sample by e-bombardment beam is collimated by electric fields q/m ratio of ions determines bending in B field detection of ions via a Faraday cup

• issues

```
quadrupole (magnetless design)
very noisy !!
good for diagnostics
can withstand 500^{\circ}C
can also be used at higher pressures with differential pumps
mass range 50amu, resolution 2amu,
```
• microscopy

optical

scanning electron microscope

atomic force microscope

• other tools

resistivity measurements for CD

stress measurements

three modeling, estimation, filtering

- introduction
- control-oriented modeling
- parameter estimation
- kalman filtering
- an example : reflectometry

- modeling objectives
 - simulation studies
 - equipment/process design
 - process control
 - sensor development
 - diagnostics & fault detection
- different objectives call for different kinds of models
 - phenomenological models
 - very accurate, detailed
 - mass and energy transport, FEM based
 - do not run in real-time
 - needed for equipment design, process simulation
 - control-oriented models

• properties

- simplified, low order
- gives first-order trend information
- may run in real-time
- used for control and diagnostics

• methods

- black-box
- grey-box
- model reduction

• issues

- experiment design
- choice of model structure
- choice of ID procedure
- model bias and variance
- model verification

• ideas

- model will have good prediction on inputs with spectral content similar to those used in ID
- averaging to reduce effects of noise

variance in estimated parameters $\approx \frac{\text{noise variance}}{\text{reduction factor}} = \frac{\sigma_e^2 * n_p}{L * n_e}$

L	number of data points
n_e	number of noise channels
n_p	number of parameters
σ_e^2	noise variance

- model verification

use fresh input-output data set

check residuals : white ? uncorrelated with input ?

• parametric

transfer functions

ARX, ARMAX

general parametric

required for any computation

• non-parametric

frequency response

impulse / step response

wiener kernels

need model reduction to get parametric model before control is done

• dealing with nonlinearities

gain-scheduled models

semi-local nonlinear models (Hammerstein, Weiner, etc.)

• basic idea

take DFT of input \boldsymbol{u} and output \boldsymbol{y}

$$H(j\omega) = \frac{Y(j\omega)}{U(j\omega)}$$

computed at N frequencies where $N={\rm length}$ of data record

bias = 0 (asymptotically)
variance =
$$\frac{\sigma_{e(\omega)}^2}{\sigma_{u(\omega)}^2}$$

estimates at different frequencies are uncorrelated

• issues

smoothing the estimate, choice of smoothing window

bias vs. variance

converting to a parametric model

nonlinearities, time-variations (under-modeling)

• basic idea

state-space model

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k$$

model parameters A, B, C, D obtained by factoring a certain matrix computed from data

works very well for multi-variable systems

no proven optimality properties

can get order estimates also

• issues

loss of physically meaningful parameters computationally intense: cannot be done in real-time nonlinearities, time-variations (under-modeling)

- general modeling problem
 - given: data u^d, y^d , model $y = f(u, \theta, e)$ where e is unit-variance Gaussian white noise
 - find: "best" estimate of parameters heta
- solution strategy: (maximum likelihood estimation)
 - note that for any fixed θ , y is a random vector.
 - compute the density function $p_{Y}(y;\theta)$. Note that

 $p_{_Y}(y^d;\theta) \, \propto \,$ the likelihood that $\, y=y^d, \; {\rm given \; parameter \; values } \, \theta$

- good choice of parameters

- computing the estimate: nonlinear programming
- can easily

incorporate prior information (statistics on θ) compute variance of parameter estimates

• issues

can only realistically treat gaussian noise case nonlinear models are linearized, and then resulting parameter estimates can be biased choice of model structure f is key : basic physics/chemistry too many parameters is bad sensitive to noise model

• problem:

Let y_k be independent random variables jointly Gaussian as $\sim \mathcal{N}(\theta, \sigma_k^2)$ known variances σ_k , unknown (common) mean θ Given observations y_k^d for $k = 1, \cdots, L$ estimate the mean θ

• solution:

Log-likelihood function is

$$J(\theta) = \sum_{k} \frac{\left(y_{k}^{d} - \theta\right)^{2}}{2\sigma_{k}^{2}}$$

This is a quadratic and is easy to minimize. We get

$$heta_{_{ML}} = \sum_k \; y_k^d w_k, \; \; {
m where} \; \; w_k = rac{\sigma_k^2}{\sum_\ell \sigma_\ell^2}$$

natural interpretation.

• consider a linear system

$$\dot{x}(t) = Ax(t) + B_u u(t) + B_v v(t)$$

$$y(t) = Cx(t) + D_u u(t) + w(t)$$

x =process state

v = process noise: used to account for under-modeling

w = measurement noise

u =process input

• assumptions

w(t), v(t), x(0) uncorrelated, known mean and covariance

• problem

build a box (in software) that processes y(t) and u(t) and produces an estimate $\hat{x}(t)$ of the state

• mathematically,

$$\hat{x} = F(u, y)$$

$$F_{opt} = \arg \min_{F} \mathbf{E} \left(\hat{x} - x \right) \left(\hat{x} - x \right)^{*}$$

- optimal filter realization
 - simple structure

 $\dot{x}(t) = A\hat{x}(t) + B_u u(t) + K(t)\nu(t)$

- copy of model driven by input \boldsymbol{u} and innovations

 $\nu(t) = (y(t) - C\hat{x}(t) - D_u u(t))$

- kalman gain K(t) computed by solving a Riccati differential equation
- for linear time-invariant problems $K(t) \rightarrow K_{\infty}$ found by solving a algebraic riccati equation
- optimality in what sense ?
 - for gaussian noises, optimal over all filters
 - for general noises, optimal over $all \ linear$ filters

- kalman gain K(t)
 - captures tradeoff between model accuracy (process noise) and sensor noise
 - results in white innovations, uncorrelated with output y(t)
- easy recursive implementation
 - requires one linear system simulation
 - requires solving one riccati equation
- very general problem
 - recursive least squares is a special case
 - can also do parameter estimation in same framework
- nonlinear systems ?
 - Extended Kalman Filtering
 - basic idea: kalman filter for the linearized system
 - not optimal in general
 - optimal nonlinear filtering: eextremely difficult

• basic idea

- significant improvement in reflectometry sensor for etch-rate estimation by incorporating a model and using EKF
- conventional etch-rate metrology

• setup

- fix a wavelength λ (analysis can be done for multiple λ)
- reflected light intensity I_r is
 - $I_r = I_o r(d, \lambda, \phi_1, \cdots, \phi_n)$
 - r : reflection coefficient
 - d : film thickness

 ϕ_1,\cdots,ϕ_n : index and thickness parameters for underlying stack

- measurements

$$y = \alpha I_r + v = \alpha f(d) + v$$

where v is meas. noise, and α captures effect of optics

- conventional methods for etch rate estimation
 - peak counting

insensitive to noise, easy implementation

- gives average, not instantaneous, etch rate
- difficult to merge information from multiple wavelengths
- nonlinear least squares

solve at each time

 $\min_d \|y_k - f(d_k)\|^2$

computationally expensive

etch rate is estimated by numerical differentiation

• EKF based method

gives direct etch rate estimate computationally reasonable can merge multiple wavelength data easily • state-space model used

 $d_{k+1} = d_k - Ter_k$ $er_{k+1} = er_k + w_k^{(1)}$ $\alpha_{k+1} = \alpha_k + w_k^{(2)}$ $y_k = \alpha_k f(d_k) + v_k$

here, er is etch rate, T is sampling time

drift of etch rate and optical gain is modeled as a random walk

• EKF details

state estimate gives er estimate Ekf requires linearizing model, i.e. gradient of falso need to solve riccati eqn riccati eqn has two knobs Q, R: measurement and process noise variance these were tweaked to get good agreement with independent etch rate measurements

four run-to-run control

- introduction
- issues
- an example
- analysis
- case study : resist thickness control

• motivation:

compensate for process drift

- basic idea:
 - build model from process inputs to measured outputs
 - measure process/wafer parameters for $k^{\rm th}$ wafer
 - use measurements to adjust process input settings for $k + 1^{st}$ wafer this requires the model built earlier
 - update model parameters as needed
- result:

wafer variability is reduced while increasing the variability at process input

- performance measures:
 - within lot wafer parameter bias & variance
 - lot-to-lot wafer parameter bias & variance

• objections:

- E. Deming "Out of the crisis : quality, productivity and competition", Cambridge, 1986
- RTR (or any other feedback) increases process variance
- RTR control can hide process / equipment defects, failures, drifts.
 This will eventually lead to catastrophic failures
- RTR control requires expensive modeling, design, hardware

• responses:

- This is true if sensor noise exceeds process variability.
 In many situations, RTR control can reduce variance.
 (more precise statement later)
- RTR control does not hide process changes.
 The controlled input settings will reveal process drifts.
 No information loss
- Expense is justified only after a cost/benefit analysis.
 For new technologies, control is *necessary*.

• issues:

- choice of model structures
 neural networks
 parametric models
 time-series models
 adaptation of models
- choice of control strategies
 fuzzy logic
 PID control
 gain-scheduled control

 choice of modeling method neural training classical non-parametric ID parameter estimation

- open problems:
 - relationship to SPC
 - SPC and RTR use same measurements
 - in SPC, key outputs are monitored and we detect
 - if a process is outside control limits
 - quantifying & measuring performance
- what would be really nice :
 - get a few numbers from the process
 - sensor bias & variance
 - process bias & variance
 - process drift
 - use this info to
 - decide if RTR is worthwhile
 - design RTR (forgetting factors, control gain)

• problem setup

- suppose the process output can be modeled as $y_k = lpha_k + eta_k u_k + e_k$

- kwafer index u_k input setting α_k, β_k model parameters e_k cumulative effect of noise/ disturbances
- note that we allow α,β to depend on k to incorporate process drift
- objective
 - we wish to regulate y to the constant reference value r
- certainty equivalent adaptive control

- if we knew $\alpha_{k+1}, \beta_{k+1}$, we would use the input setting $u_{k+1} = \frac{r - \alpha_k}{\beta_k}$ for the next wafer

- since we don't know the model parameters, we use our best estimates $\hat{\alpha}_{k+1}, \hat{\beta}_{k+1}$ based on past data

- estimating the parameters
 - now suppose β is constant and known
 - one estimate for α is

$$\hat{\alpha}_{k+1} = (1-w)\hat{\alpha}_k + w(y_k - \beta u_k)$$

here, w is a weight that discounts old data

- more generally, we can use a kalman filter to recursively estimate the parameters
 - automatically tradeoff parameter drift and measurement noise
 - need Q, R, P_0 : drift variance, sensor variance, initial guess variance
- analysis
 - performance analysis of certainty equivalence adaptive control is hard in general
 - can study simple cases analytically
 - more complex cases by simulation

• stability analysis of simple example

- suppose true plant model is $y_k = \alpha_k + bu_k + e_k$
- closed loop behaviour is

$$u_{k+1} = u_k - \frac{w}{\beta}(y_k - r)$$
$$= \left(1 - \frac{wb}{\beta}\right)u_k - \frac{w}{\beta}(\alpha_k + e_k - r)$$

- integral action control
- closed-loop behavior is stable $\iff 0 \le \frac{wb}{\beta} \le 2$
- thus, we need sign of b correctly

- performance analysis of simple example
 - assume stability
 - since closed-loop is a linear system, can analyze r and e separately
- convergence analysis
 - first assume $\alpha = \alpha^{\circ} = \text{constant}$, e = 0 (no noise)
 - then $(y_k r)$ decays to zeros exponentially as $\left(1 \frac{wb}{\beta}\right)^k$
 - for rapid response, need $wb=\beta,$ or $w\approx 1$
 - robustness analysis
- noise analysis

— it happens that
$$\sigma_y^2=rac{2\sigma_e^2}{2-w}$$

- Deming is proved right !?
- true if e is the only source of variability
- if α also varies, RTR can reduce σ_y^2

- lithography product parameters
 - critical dimension & overlay error
- affected by
 - resist thickness & uniformity
 - PAC concentration
 - exposure dose, stepper vibration and alignment
 - pre-bake, post-bake, & develop times
- we focus on controlling the resist coating and post-bake process. Objective is to remove process variation in
 - resist thickness & PAC concentration
- motivation
 - resist thickness determines focal plane setting
 - PAC determines exposure dose

- equipment used
 - SVG 8626 wafer track
 - 8363 HPO bake plate
 - OCG-820 resist

- processing steps
 - pre-bake and HMDS
 - resist deposition
 - post-bake, cool, measure

- measured variables are
 - resist thickness t
 - photo-active compound concentration PAC
- metrology details
 - indirect measurement of t, PAC
 - use Xenon light source and photospectrometer to get reflectance vs. wavelength curves
 - software to curve fit in two separate bands to get t and PAC.
 - need thickness and index (or composition) of underlying layer

spin coating process is most significantly affected by

- spin speed ω
 - increased ω results in decreased t
 - increments limited to $\pm 100~\mathrm{rpm}$
- \bullet bake Temperature T
 - solvent evaporation reduces t
 - baking reduces sensitivity of PAC
 - increments limited to $\pm 3^\circ$ C

This is why we choose to actuate ω and T

- in addition to actuated inputs, process is affected by
 - resist viscosity
 - environmental effects
 - wear and age of wafer track
- we regard these as unmodeled disturbances.
- could have used an environmentally controlled chamber expensive.

- to regulate resist thickness t, we need a model
 - simple log-linear model in literature

 $\log t = a \log(\omega) + b + w$

- $-\ w$ is measurement noise, a,b are constants
- could have used a complex model
 - $-\ensuremath{\text{good}}$ for simulation
 - bad for control as $% i=1,2,\ldots,2$ controller complexity \approx model complexity
- simple model has poor predictive capability across a lot
 - does not include process disturbances
 - to do this, we let model parameters drift slowly

$$\log t_k = a_k \log(\omega_k) + b_k + w_k$$
$$\begin{bmatrix} a_{k+1} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} a_k \\ b_k \end{bmatrix} + v_k$$

 $-v_k$ is process noise to account for disturbance effects

• standard assumptions

- $-v_k, w_k$ are zero-mean, Gaussian, white, independent
- (unknown) covariance matrices $Q = E[v_k v'_k]$ and $R = E[w_k w'_k]$
- \bullet to simultaneously regulate t and PAC we use a similar model

$$\log t_{k} = a_{k} \log(\omega_{k}) + b_{k} \log(T_{k}) + c_{k} + w_{k}^{(1)}$$
$$\log PAC_{k} = d_{k} \log(\omega_{k}) + e_{k} \log(T_{k}) + f_{k} + w_{k}^{(2)}$$
$$\begin{bmatrix} a_{k+1} \\ \vdots \\ f_{k+1} \end{bmatrix} = \begin{bmatrix} a_{k} \\ \vdots \\ f_{k} \end{bmatrix} + \mathbf{v}_{k}$$

- model above
 - is empirical
 - experiments were conducted to validate assumptions
 - model is adequate for small input changes

• standard Model form

$$y_k = C_k \theta_k + w_k$$
$$\theta_{k+1} = \theta_k + v_k$$

• kalman filter permits optimal recursive estimation of parameters θ_k based on past measurements

$$\hat{\theta}_{k+1} = \hat{\theta}_{k} + L_{k} \left(y_{k} - C_{k} \hat{\theta}_{k} \right)$$

$$L_{k+1} = P_{k+1} C'_{k+1} \left(C_{k+1} P_{k+1} C'_{k+1} + R \right)^{-1}$$

$$P_{k+1} = P_{k} - L_{k} C_{k} P_{k} + Q$$

• need three inputs to initialize filter

$$-Q = E [w_k w'_k]$$
$$-R = E [v_k v'_k]$$
$$-P_0 = E [\theta_0 \theta'_0]$$

- basic Idea:
 - use past measurements to estimate current parameter $\hat{ heta}_k$
 - estimator discounts old data
 - generate new command ω_{k+1} based on model and desired thickness r
 - User specified inputs: (machine dependent)
 - sensor variance Q
 - within-lot parameter variance R
 - initial parameter variance P_0

- experimental details
 - bake temperature held constant to suppress its effects
 - unpatterned wafers SiO_2 on Si substrate
 - $-SiO_2$ layer was $1188 \pm 6 Å$
 - prebake and HMDS omitted
- sensor variance R obtained by repeated measurements on a coated wafer at same location $~R\approx 27 {\rm \AA}$
- \bullet process variance Q obtained by minimizing prediction error over a wafer run of 15 wafers
- initial parameter values $\hat{\theta}_0$ and variance P_0 obtained by optimal fitting for each run and sample-path averaging over a 15 wafer run

• Open Loop

- offset from target (lot-to-lot variance) $\approx \pm 300 {
 m \AA}$
- wafer-to-wafer variance $\approx \pm 60 {\rm \AA}$

• Closed Loop

- offset from target (after two wafers) $pprox \pm 30 \AA$
- wafer-to-wafer variance $\approx \pm 30 \text{\AA}$ theoretical limit = sensor variance (27 Å)

- sensor variance R
 - for t obtained as before $\approx 27 \text{\AA}$
 - for PAC we took repeated measurements on a wafer processed with $\omega = 4600$ rpm and $T = 90^{\circ} \text{ C} \approx 0.012$ (normalized units)
- process variance Q, and initial parameter variance P_0 obtained as before

	Open Loop	Closed Loop
bias in t	300Å	30Å
variance in t	60Å	45Å
bias in <i>PAC</i>	.04	.04
variance in PAC	.03	.04

- outlier: due to actuator limit on changes in T to $\pm 3^{\circ}$ C
- need to run more wafers to conclusively show benefits of control
- run-to-run control results in performance improvement with minimal capital cost
- no need to do real-time control here