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Outline

one model-based control

− why use it ? how does it help ?

− ingredients

− control architectures

two sensors

− general issues and tradeoffs

− temperature sensors (pyrometry, thermocouples, acoustic wave)

− pressure and flow sensors (manometers, McLeod transducer, momentum devices)

− composition sensors (OES, LIF, RGA, Mass Spectroscopy, actinometry)

− thickness sensors (reflectometry, ellipsometry)

− post-process sensing (SEM, AFM, other microscopy)
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Outline (contd.)

three filtering, estimation, modeling

− introduction

− control-oriented modeling

− kalman filtering

− an example : reflectometry

− parameter estimation

four run-to-run control

− introduction

− a simple scheme

− analysis

− case study : resist thickness control

five real-time control

− introduction

− case study : rapid thermal processing

− case study : reactive ion etch

− implementation issues
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Model based control

• Why do control ?

− control is an enabling technology for the next generation of integrated electronics

− control is a cost-effective means of retrofitting existing fab lines

− importance is gaining acceptance – Industry, UCB, Stanford, Michigan, CMU, Texas
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Introduction (contd.)

• How does control help ?

− can reduce variability in product parameters (ex: CD, sidewall, etc.)

by regulating process parameters (ex: etch rate, bake temp, etc.)

− can reduce time to re-calibrate a process

(ex: etchers taken off line for routine cleaning)

− required for effective sensor development

− can provide early diagnostic warnings (ex: control signals )

− can accelerate time-to-yield

− result: higher yields & equip utilization, lower product variance

with modest capital cost
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Model based control

• Ingredients of control

− model : control-oriented, need not be detailed or accurate

− sensors : to measure process parameters

− actuators : to change process operating point

− reference command : desired value (or trajectory) of

process parameters

• Hierarchical control levels

− supervisory : oversees commands for wafers lot-by-lot,

uses SPC and response surface models,

− run-to-run : command for a wafer are generated based

on metrology of previous wafer

− real-time : requires modern control and ID methods,

accurate in situ metrology
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General control architecture

State

Noises &

Process Wafer
State

CommandController

Actuated

Setpoints

Process Wafer

Generator

ModelModel

Disturbances

Inputs

• controller keep process parameters constant even with disturbances and
using a coarse model

• this results in product parameters being regulated to constant values

• we can later map the process parameters to the product parameters to
generate appropriate reference commands
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Outline

two sensors

− general issues

− tradeoffs

− temperature sensors (pyrometry, thermocouples, acoustic wave)

− pressure and flow sensors (manometers, McLeod transducer, momentum de-

vices)

− composition sensors (OES, LIF, RGA, Mass Spectroscopy, actinometry)

− thickness sensors (reflectometry, ellipsometry)

− post-process sensing (SEM, AFM, other microscopy)
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Introduction

• Sensors (and actuators) are key limiting factors in application of control
techniques to semiconductor manufacturing

• sources of difficulty

− implementation environment (vacuum, clean facilities, etc.)

− perception that in-situ sensors affect process

− ex-situ sensors can reduce throughput

− cost of ownership

− traditional resistance in industry
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General Remarks on Sensors

• modeling is often key part of sensing

− physical quantity of interest may not be directly measured

(ex: OES indirectly contains info about etch process state)

− thus, sensors are based on a model of the underlying physical process

sensors = model + data

• signal processing

− needed to reduce noise, improve bandwidth

− difference between data and information

• problems

− sensors require calibration

− must account for drift

• other issues

− sensor fusion

− data compression

kp/ 9



Key Issues in Sensors

• some key tradeoffs

− non-invasive vs. invasive

− non-destructive vs. destructive

− in-situ vs. ex-situ

− speed vs. accuracy

− noise

• bias (accuracy) vs. variance (repeatability)

− a sensor could be inaccurate,

(ex: a thermocouple readings are off by 4◦K)

− but the sensor might have good repeatability, (ex: it is consistently off)

− repeatability is often more important for process control

• modern filtering and estimation methods can be of great use in improved
sensing software. (an example from reflectometry later)
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Thermocouples

• operating principle

Peltier-Seebeck effect, up to 3000◦C

T gradient along wires of different materials develop different emf

emf measures junction T

platinum rhodium alloy, or silicon based

sensitivity 100− 200µV/◦K

• problems

big problems with shield design

radiative effects

low signal – need amplifiers or use thermopile

invasive

gas T measurement is very hard, especially < 10−4 torr

• comments

inexpensive, low drift

accuracy ≈ ±5◦C at 800◦C

low bandwidth

where do you want to measure T ?
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Acoustic Wave sensors

• operating principle

acoustic wave is transmitted through body

surface and internal waves propagate thru body at T dependent speed

interference with source gives beats

beat frequency determines T

• issues

implementation difficulty

invasive

calibration
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Pyrometry

• operating principle

hot objects radiate

radiation is wavelength dependent

radiation model for black bodies (Planck’s Law)

Rλ =
37418

λ5
(
e14388/λT − 1

)

λ in microns, T in ◦K, Rλ

for non-black bodies need to account for emissivity

• issues

surface properties affect radiation

multiple internal reflections

emissivity is wavelength and geometry dependent

can change during processing

calibrations via thermocouples, difficult
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Pressure Sensors

• direct gauges

displacement of a solid or liquid surface

capacitance manometer, McLeod pressure transducer

• indirect gauges

measurement of a gas related property

momentum transfer, charge generation

• huge range of available sensors

cost

sensitivity

range

kp/ 14



Capacitance manometer

• basic idea

pressure differential causes

displacement of diaphragm

sense capacitance change

between diaphragm and fixed

electrode

resolution 10−2 percent

at 2 hertz and 10−3 torr
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Gas flow meters

• differential pressure meters

• thermal mass flow meters

mass flow =
K

T1 − T2

K depends on specific heat of gas etc.

must be calibrated for different gases

accuracy ≈ 1 sccm at flows of 40 sccm

low bandwidth because of thermal inertia
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OES

• measures concentration of various species present in plasmas

• useful in various plasma etch and plasma-enhanced deposition control
applications

− endpoint detection

− impurity detection

− etch rate monitoring

− uniformity measurement

• provides real-time measurements (> 1 Hz)

• simple installation on most plasma etchers.
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OES (contd.)

• operation principle

− plasmas contain ions, neutral radicals, energetic electrons

− plasma discharge light

A + e −→ A∗ + e, A∗ −→ A + hν

here A∗ is the excited state of particle A

− frequency of emitted light

depends on allowable energy transitions

is characteristic of species

sometimes there is no useful emission signature in OES

(ex: SiH3 in PECVD with silane plasma)
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OES (contd.)
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OES (contd.)

Mirrors

Diffraction grating
Plasma etcher

viewport
Quartz

Fibers
Optical

CCD
camera

• optical equipment options

− photo-detector (possibly with scanning of diffraction grating)

− photo-diode array

− CCD camera

− Choice depends on number of factors

frequency resolution, spatial resolution, acquisition rates,

bandwidth, sensitivity, etc.
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OES (contd.)

• signal Processing Issues

− OES intensities depends on several factors in addition to species concentration, such

as

Excitation probability (strongly dependent on RF power),

Optical collection efficiency (drifts over time due to residue build-up on window).

− full-spectrum OES may require data compression and noise reduction.

− signal intensity may be too weak in

Small area etches (vias and contact cuts in oxide)

Detection of trace Cu sputter targets in Al-Cu etches.
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LIF

• basic idea

use a pulsed laser to excite plasma, observe induced emission

laser can be tuned to cause specific excitations

can detect species that have no natural emission (ex: SiH3)

can detect species in ground state

• details

Nd− Y AG laser source @1064 nm used to pump tunable dye laser

pulsed lasers provide much more power in short excitation phase

thus emission exceeds background

collection optics at 90◦ to source to minimize scattered light

can detect and measure CF,CF2, SiO, SiN, BCl, Cl2+, ...

kp/ 22



LIF (contd.), LAS

• issues

excellent spatial resolution (5 microns)

excellent temporal resolution (100 nsec)

sensitivity 106 − 108 particles/cm3

complex collection optics and signal processing

more complex than OES, but much more accurate

requires side viewing port

requires actinometry for calibration

limited to species with absorption in 200− 900 nm range

• other option – Laser absorption spectroscopy

tunable laser diode is used as source in IF range

absorption is very low here, so multiple passes are needed

path length is ≈ 1 Km

poorer resolution

qualitative tool
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Actinometry

• objective: calibrate OES/LIF signals

• basic idea

introduce known amount of inert gas B (ex: Ar)

choose wavelength in inert gas emission spectrum whose

excitation X-section, and excitation energy resembles species of interest A. Then,

Ia(λa)

Ib(λb)
= K

Na

Nb

Ia, Ib measured intensities

Ni = molar fraction of input gas i

K = actinometric constant (assumed fixed for other species also)

• issues

useful only for measurement relative species concentration

repeatability is a big issue: must ensure that emission lines go thru same optical

path, uniform temporal electron densities, etc.
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Diffraction gratings

• used to spectrally resolve light

• operating principle

close parallel lines or steps etched on a surface

mechanically made gratings : etched glass or plastic

holographically patterned gratings : higher transmission, flatter response

modern gratings are blazed : periodic phase shifting across grating,

concentrates light energy in a specific order

• performance characteristics

peak location is at sinθ = mλ/d

resolving power R =
λ

∆λ
= Nm

dispersion D =
∆θ

∆λ
=

m

d cos θ
Here, d = spacing, N = number of lines, m = order

λ = wavelength of incident light, θ = viewing angle
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Monochromators

• basic idea

− essentially a tunable narrow-band wavelength selective optical filter

− uses a diffraction grating

• issues

− accuracy of selected wavelength

− calibration

− efficiency (transmission ≈ 10 %)

• Czerny-Turner monochromator

− grating is rotated by a stepper drive

− angle of rotation determines wavelength of light at exit slit

• dielectric bandpass filters

− fixed wavelength applications

− transmission ≈ 50 - 70 %

kp/ 26



Czerny-Turner monochromator
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Light Detectors

• photo-multipliers

very high gain photon detectors – rely on cascading

resolution 0.05 photons/sec

spectral characteristic are adjustable by choice of material

• photo-diode arrays

can be used directly to measure intensity vs. wavelength

lower resolution than a monochromator with pmt

wider spectral coverage than monochromator with pmt

light strikes a multi-channel intensifier plate and emits electrons

DC bias accelerates electrons towards a phosphor target

fiber optics connect to pixels (up to 1200)

need to be cooled to limit thermal photo-electron emissions

smaller dynamic range
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Photodetectors (contd.)

• CCD arrays

similar operating principle as photo-diode arrays

no multi-channel intensifier plate

wider spatial coverage

lower resolution

very inexpensive
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Reflectometry

• operating principle

interference between light reflected from top surface and

from surfaces in underlying stack

intensity at detector is ≈ sinusoidal in thickness of top layer and in wavelength

provides thickness/index/composition measurement of top layer

typically near-normal incidence

• applications

etch-rate measurement

develop-rate measurement

end-point detection
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Reflectometry (contd.)

• single-wavelength

pulsed laser source is preferred

detected light is filtered at pulsing frequency to reduce noise

thickness accuracy ±20Å

• spectral reflectometry

broad band incoherent source for scan-wavelength

more noisy, but can solve for more unknowns (index and composition)

• issues

absolute intensity measurement is hard, need to model optics

need underlying stack geometry and indices

multiple internal reflections

phase shifts at stack boundaries

surface roughness

patterned wafers
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Ellipsometry

• operating principle

circularly polarized incident light

⊥ and ‖ components undergo different reflections

Fresnel reflection coefficients

r⊥12 =
n2 cos φ1 − n1 cos φ2

n2 cos φ1 + n1 cos φ2

r
‖
12 =

n1 cos φ1 − n2 cos φ2

n1 cos φ1 + n2 cos φ2

received light is elliptically polarized
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Ellipsometry (contd.)

• issues

polarization of detected light is measured by nulling

no need to have intensity measurements

polarized light source

• comments

can measure 2 quantities – typically index and film thickness

spectrally and spatially resolved ellipsometry

extremely accurate – index ±.1%, thickness ±4Å

more expensive and delicate than reflectometry

kp/ 33



Mass Spectrometers

• two types

flux analyzers : sample gas thru aperture

partial pressure sensors : analysis in exhaust stack

• issues

recombination in mass spec tube changes

indistinguishable species : (ex: CO, N2 and Si have same amu (28))

pressure measurements are removed from processing chamber

kp/ 34



RGA

• basic idea

special kind of mass spectrometer

measures gas compositions

works at low vacuum < 10−5 torr

ion beam is produced from gas sample by e-bombardment

beam is collimated by electric fields

q/m ratio of ions determines bending in B field

detection of ions via a Faraday cup

• issues

quadrupole (magnetless design)

very noisy !!

good for diagnostics

can withstand 500◦C
can also be used at higher pressures with differential pumps

mass range 50amu, resolution 2amu,
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Post-process Metrology

• microscopy

optical

scanning electron microscope

atomic force microscope

• other tools

resistivity measurements for CD

stress measurements
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Outline

three modeling, estimation, filtering

− introduction

− control-oriented modeling

− parameter estimation

− kalman filtering

− an example : reflectometry
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Introduction

• modeling objectives

− simulation studies

− equipment/process design

− process control

− sensor development

− diagnostics & fault detection

• different objectives call for different kinds of models

− phenomenological models

very accurate, detailed

mass and energy transport, FEM based

do not run in real-time

needed for equipment design, process simulation

− control-oriented models
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Control-oriented modeling

• properties

− simplified, low order

− gives first-order trend information

− may run in real-time

− used for control and diagnostics

• methods

− black-box

− grey-box

− model reduction

• issues

− experiment design

− choice of model structure

− choice of ID procedure

− model bias and variance

− model verification
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General Modeling Issues

• ideas

− model will have good prediction on inputs with spectral content

similar to those used in ID

− averaging to reduce effects of noise

variance in estimated parameters ≈ noise variance

reduction factor
=

σ2
e ∗ np

L ∗ ne

L number of data points

ne number of noise channels

np number of parameters

σ2
e noise variance

− model verification

use fresh input-output data set

check residuals : white ? uncorrelated with input ?
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Models

• parametric

transfer functions

ARX, ARMAX

general parametric

required for any computation

• non-parametric

frequency response

impulse / step response

wiener kernels

need model reduction to get parametric model before control is done

• dealing with nonlinearities

gain-scheduled models

semi-local nonlinear models (Hammerstein, Weiner, etc.)
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ETFE

• basic idea

take DFT of input u and output y

H(jω) =
Y (jω)

U(jω)

computed at N frequencies where N = length of data record

bias = 0 (asymptotically)

variance =
σ2

e(ω)

σ2
u(ω)

estimates at different frequencies are uncorrelated

• issues

smoothing the estimate, choice of smoothing window

bias vs. variance

converting to a parametric model

nonlinearities, time-variations (under-modeling)
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State-space ID

• basic idea

state-space model

xk+1 = Axk + Buk

yk = Cxk + Duk

model parameters A,B,C,D obtained by factoring a certain matrix computed from

data

works very well for multi-variable systems

no proven optimality properties

can get order estimates also

• issues

loss of physically meaningful parameters

computationally intense: cannot be done in real-time

nonlinearities, time-variations (under-modeling)
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ML parameter estimation

• general modeling problem

− given: data ud, yd, model y = f (u, θ, e)

where e is unit-variance Gaussian white noise

− find: “best” estimate of parameters θ

• solution strategy: (maximum likelihood estimation)

− note that for any fixed θ, y is a random vector.

− compute the density function p
Y
(y; θ). Note that

p
Y
(yd; θ) ∝ the likelihood that y = yd, given parameter values θ

− good choice of parameters

θ
ML

= arg max
θ

p
Y
(yd : θ)

= arg min
θ

J(θ)

where J(θ) = − log p
Y
(yd : θ) = log-likelihood function.
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ML Estimation (contd.)

• computing the estimate: nonlinear programming

• can easily

incorporate prior information (statistics on θ)

compute variance of parameter estimates

• issues

can only realistically treat gaussian noise case

nonlinear models are linearized, and then

resulting parameter estimates can be biased

choice of model structure f is key : basic physics/chemistry

too many parameters is bad

sensitive to noise model
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Example

• problem:
Let yk be independent random variables jointly Gaussian as ∼ N (

θ, σ2
k

)

known variances σk, unknown (common) mean θ

Given observations yd
k for k = 1, · · · , L

estimate the mean θ

• solution:
Log-likelihood function is

J(θ) =
∑

k

(
yd

k − θ
)2

2σ2
k

This is a quadratic and is easy to minimize. We get

θ
ML

=
∑

k

yd
kwk, where wk =

σ2
k∑

` σ2
`

natural interpretation.
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Kalman Filtering: setup

• consider a linear system

ẋ(t) = Ax(t) + Buu(t) + Bvv(t)

y(t) = Cx(t) + Duu(t) + w(t)

x = process state

v = process noise : used to account for under-modeling

w = measurement noise

u = process input

• assumptions
w(t), v(t), x(0) uncorrelated, known mean and covariance

• problem
build a box (in software) that processes y(t) and u(t) and

produces an estimate x̂(t) of the state

• mathematically,

x̂ = F (u, y)

Fopt = arg min
F

E (x̂− x) (x̂− x)∗

kp/ 47



Kalman Filtering: solution

• optimal filter realization

− simple structure

ẋ(t) = Ax̂(t) + Buu(t) + K(t)ν(t)

− copy of model driven by input u and innovations

ν(t) = (y(t)− Cx̂(t)−Duu(t))

− kalman gain K(t) computed by solving a Riccati differential equation

− for linear time-invariant problems K(t) → K∞
found by solving a algebraic riccati equation

• optimality in what sense ?

− for gaussian noises, optimal over all filters

− for general noises, optimal over all linear filters
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Kalman Filtering: remarks

• kalman gain K(t)

− captures tradeoff between model accuracy (process noise) and sensor noise

− results in white innovations, uncorrelated with output y(t)

• easy recursive implementation

− requires one linear system simulation

− requires solving one riccati equation

• very general problem

− recursive least squares is a special case

− can also do parameter estimation in same framework

• nonlinear systems ?

− Extended Kalman Filtering

− basic idea: kalman filter for the linearized system

− not optimal in general

− optimal nonlinear filtering: eextremely difficult
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Application: reflectometry

• basic idea

− significant improvement in reflectometry sensor for etch-rate estimation

by incorporating a model and using EKF

− conventional etch-rate metrology

• setup

− fix a wavelength λ (analysis can be done for multiple λ)

− reflected light intensity Ir is

Ir = Ior(d, λ, φ1, · · · , φn)

r : reflection coefficient

d : film thickness

φ1, · · · , φn : index and thickness parameters for underlying stack

− measurements

y = αIr + v = αf (d) + v

where v is meas. noise, and α captures effect of optics
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Application (contd.)

• conventional methods for etch rate estimation

− peak counting

insensitive to noise, easy implementation

gives average, not instantaneous, etch rate

difficult to merge information from multiple wavelengths

− nonlinear least squares

solve at each time

min
d

‖yk − f (dk)‖2

computationally expensive

etch rate is estimated by numerical differentiation

• EKF based method

gives direct etch rate estimate

computationally reasonable

can merge multiple wavelength data easily
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Application (contd.)

• state-space model used

dk+1 = dk − Terk

erk+1 = erk + w
(1)
k

αk+1 = αk + w
(2)
k

yk = αkf (dk) + vk

here, er is etch rate, T is sampling time

drift of etch rate and optical gain is modeled as a random walk

• EKF details

state estimate gives er estimate

Ekf requires linearizing model, i.e. gradient of f

also need to solve riccati eqn

riccati eqn has two knobs Q,R : measurement and process noise variance

these were tweaked to get good agreement with

independent etch rate measurements
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Outline

four run-to-run control

− introduction

− issues

− an example

− analysis

− case study : resist thickness control
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Introduction

• motivation:
compensate for process drift

• basic idea:

− build model from process inputs to measured outputs

− measure process/wafer parameters for kth wafer

− use measurements to adjust process input settings for k + 1st wafer

this requires the model built earlier

− update model parameters as needed

• result:
wafer variability is reduced while increasing the variability at process input

• performance measures:

− within lot wafer parameter bias & variance

− lot-to-lot wafer parameter bias & variance
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Discussion of RTR control

• objections:

− E. Deming “Out of the crisis : quality, productivity and competition”, Cambridge, 1986

− RTR (or any other feedback) increases process variance

− RTR control can hide process / equipment defects, failures, drifts.

This will eventually lead to catastrophic failures

− RTR control requires expensive modeling, design, hardware

• responses:

− This is true if sensor noise exceeds process variability.

In many situations, RTR control can reduce variance.

(more precise statement later)

− RTR control does not hide process changes.

The controlled input settings will reveal process drifts.

No information loss

− Expense is justified only after a cost/benefit analysis.

For new technologies, control is necessary.
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Discussion of RTR control (contd.)

• issues:

− choice of model structures

neural networks

parametric models

time-series models

adaptation of models

− choice of control strategies

fuzzy logic

PID control

gain-scheduled control

− choice of modeling method

neural training

classical non-parametric ID

parameter estimation
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Discussion of RTR control (contd.)

• open problems:

− relationship to SPC

SPC and RTR use same measurements

in SPC, key outputs are monitored and we detect

if a process is outside control limits

− quantifying & measuring performance

• what would be really nice :

− get a few numbers from the process

sensor bias & variance

process bias & variance

process drift

− use this info to

decide if RTR is worthwhile

design RTR (forgetting factors, control gain)
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An example

• problem setup

− suppose the process output can be modeled as yk = αk + βkuk + ek

k wafer index

uk input setting

αk, βk model parameters

ek cumulative effect of noise/ disturbances

− note that we allow α, β to depend on k to incorporate process drift

• objective

− we wish to regulate y to the constant reference value r

• certainty equivalent adaptive control

− if we knew αk+1, βk+1, we would use the input setting uk+1 =
r − αk

βk
for the next wafer

− since we don’t know the model parameters,

we use our best estimates α̂k+1, β̂k+1 based on past data
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Example (contd.)

• estimating the parameters

− now suppose β is constant and known

− one estimate for α is

α̂k+1 = (1− w)α̂k + w(yk − βuk)

here, w is a weight that discounts old data

• more generally, we can use a
kalman filter to recursively estimate the parameters

− automatically tradeoff parameter drift and measurement noise

− need Q,R, P0 : drift variance, sensor variance, initial guess variance

• analysis

− performance analysis of certainty equivalence adaptive control

is hard in general

− can study simple cases analytically

− more complex cases by simulation

kp/ 58



Example (contd.)

• stability analysis of simple example

− suppose true plant model is yk = αk + buk + ek

− closed loop behaviour is

uk+1 = uk − w

β
(yk − r)

=

(
1− wb

β

)
uk − w

β
(αk + ek − r)

− integral action control

− closed-loop behavior is stable ⇐⇒ 0 ≤ wb

β
≤ 2

− thus, we need sign of b correctly
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Example (contd.)

• performance analysis of simple example

− assume stability

− since closed-loop is a linear system, can analyze r and e separately

• convergence analysis

− first assume α = α◦ = constant, e = 0 (no noise)

− then (yk − r) decays to zeros exponentially as

(
1− wb

β

)k

− for rapid response, need wb = β, or w ≈ 1

− robustness analysis

• noise analysis

− it happens that σ2
y =

2σ2
e

2− w
− Deming is proved right !?

− true if e is the only source of variability

− if α also varies, RTR can reduce σ2
y
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Case Study: Photoresist control

• lithography product parameters

− critical dimension & overlay error

• affected by

− resist thickness & uniformity

− PAC concentration

− exposure dose, stepper vibration and alignment

− pre-bake, post-bake, & develop times

• we focus on controlling the resist coating and post-bake process. Objec-
tive is to remove process variation in

− resist thickness & PAC concentration

• motivation

− resist thickness determines focal plane setting

− PAC determines exposure dose
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Process Description

• equipment used

− SVG 8626 wafer track

− 8363 HPO bake plate

− OCG-820 resist

• processing steps

− pre-bake and HMDS

− resist deposition

− post-bake, cool, measure

Wafer Cassette

Spin Chuck

Sensor

Cold Plate

Soft-Baking

Hot Plate

Wafer Cassette
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Sensors

• measured variables are

− resist thickness t

− photo-active compound concentration PAC

• metrology details

− indirect measurement of t, PAC

− use Xenon light source and photospectrometer to get reflectance vs. wavelength

curves

− software to curve fit in two separate bands to get t and PAC.

− need thickness and index (or composition)

of underlying layer
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Actuators

spin coating process is most significantly affected by

• spin speed ω

− increased ω results in decreased t

− increments limited to ±100 rpm

• bake Temperature T

− solvent evaporation reduces t

− baking reduces sensitivity of PAC

− increments limited to ±3◦ C

This is why we choose to actuate ω and T
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Process Disturbances

• in addition to actuated inputs, process is affected by

− resist viscosity

− environmental effects

− wear and age of wafer track

• we regard these as unmodeled disturbances.

• could have used an environmentally controlled chamber – expensive.
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Process Modeling

• to regulate resist thickness t, we need a model

− simple log-linear model in literature

log t = a log(ω) + b + w

− w is measurement noise, a, b are constants

• could have used a complex model

− good for simulation

− bad for control as controller complexity ≈ model complexity

• simple model has poor predictive capability across a lot

− does not include process disturbances

− to do this, we let model parameters drift slowly

log tk = ak log(ωk) + bk + wk
 ak+1

bk+1


 =


 ak

bk


 + vk

− vk is process noise to account for disturbance effects
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Process Modeling (contd.)

• standard assumptions

− vk, wk are zero-mean, Gaussian, white, independent

− (unknown) covariance matrices Q = E [vkv
′
k] and R = E [wkw

′
k]

• to simultaneously regulate t and PAC we use a similar model

log tk = ak log(ωk) + bk log(Tk) + ck + w
(1)
k

log PACk = dk log(ωk) + ek log(Tk) + fk + w
(2)
k



ak+1

...

fk+1




=




ak

...

fk




+ vk

• model above

− is empirical

− experiments were conducted to validate assumptions

− model is adequate for small input changes
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Kalman Filtering

• standard Model form

yk = Ckθk + wk

θk+1 = θk + vk

• kalman filter permits optimal recursive estimation of parameters θk based
on past measurements

θ̂k+1 = θ̂k + Lk

(
yk − Ckθ̂k

)

Lk+1 = Pk+1C
′
k+1 (Ck+1Pk+1C

′
k+1 + R)

−1

Pk+1 = Pk − LkCkPk + Q

• need three inputs to initialize filter

− Q = E [wkw
′
k]

− R = E [vkv
′
k]

− P0 = E [θ0θ
′
0]
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Kalman-Filter based Adaptive Command Generation

u
k+1

u

Spin Coating Process

Z
-1

Generation

Command Kalman

Filter

yk

θ

k

rk+1

k+1

• basic Idea:

− use past measurements to estimate current parameter θ̂k

− estimator discounts old data

− generate new command ωk+1 based on model and desired thickness r

− User specified inputs: (machine dependent)

sensor variance Q

within-lot parameter variance R

initial parameter variance P0
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Results: thickness control

• experimental details

− bake temperature held constant to suppress its effects

− unpatterned wafers SiO2 on Si substrate

− SiO2 layer was 1188± 6Å

− prebake and HMDS omitted

• sensor variance R obtained by repeated measurements on a coated wafer
at same location R ≈ 27Å

• process variance Q obtained by minimizing prediction error over a wafer
run of 15 wafers

• initial parameter values θ̂0 and variance P0 obtained by optimal fitting
for each run and sample-path averaging over a 15 wafer run
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Results: thickness control
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• Open Loop

− offset from target (lot-to-lot variance) ≈ ±300Å

− wafer-to-wafer variance ≈ ±60Å

• Closed Loop

− offset from target (after two wafers) ≈ ±30Å

− wafer-to-wafer variance ≈ ±30Å

theoretical limit = sensor variance (27Å)
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Results: PAC and thickness control

• sensor variance R

− for t obtained as before ≈ 27Å

− for PAC we took repeated measurements on a wafer processed with ω = 4600rpm

and T = 90◦ C ≈ 0.012 (normalized units)

• process variance Q, and initial parameter variance P0 obtained as before

Open Loop Closed Loop

bias in t 300Å 30Å

variance in t 60Å 45Å

bias in PAC .04 .04

variance in PAC .03 .04
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Results: PAC and thickness control
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Discussion

• outlier: due to actuator limit on changes in T to ±3◦ C

• need to run more wafers to conclusively show benefits of control

• run-to-run control results in performance improvement
with minimal capital cost

• no need to do real-time control here
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