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The purpose of this class

To integrate views, tools, data and methods towards a 
coherent view of the problem of Efficient Semiconductor 
Manufacturing.

The emphasis is on technical/engineering issues related 
to current state-of-the-art as well as future technology 
generations.
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The Evolution of Manufacturing Science
1. Invention of machine tools. English system (1800). 

mechanical - accuracy
2. Interchangeable components. American system (1850). 

manufacturing - repeatability
3. Scientific management. Taylor system (1900).    

industrial - reproducibility
4. Statistical Process Control (1930).                         

quality - stability
5. Information Processing and Numerical Control (1970). 

system - adaptability
6. Intelligent Systems and CIM (1980).               

knowledge – versatility
7. Physical and logical (“lights out”) Automation (2000).       

integration – efficiency
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Fall 2003 EE290H Tentative Weekly Schedule

1. Functional Yield of ICs and DFM. 
2. Parametric Yield of ICs.
3. Yield Learning and Equipment Utilization.

4. Statistical Estimation and Hypothesis Testing.
5. Analysis of Variance.
6. Two-level factorials and Fractional factorial Experiments.

7. System Identification. 
8. Parameter Estimation.
9. Statistical Process Control.                 Distribution of projects.  (week 9)

10. Run-to-run control.
11. Real-time control.                Quiz on Yield, Modeling and Control (week 12)

12. Off-line metrology - CD-SEM, Ellipsometry, Scatterometry
13. In-situ metrology - temperature, reflectometry, spectroscopy

14. The Computer-Integrated Manufacturing Infrastructure

15. Presentations of project results. 

Process
Modeling

Process
Control

IC Yield & 
Performance

Metrology

Manufacturing
Enterprise
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IC Yield and Performance
• Defect Limited Yield

• Definition and Importance

• Metrology

• Modeling and Simulation

• Design Rules and Redundancy

• Parametric Yield
• Parametric Variance and Profit

• Metrology and Test Patterns

• Modeling and Simulation

• Worst Case Files and DFM

• Equipment Utilization
• Definition and NTRS Goals

• Measurement and Modeling

• Industrial Data

• General Yield Issues
• Yield Learning

• Short loop methods and the promise of in-situ metrology
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What Determines IC Production Efficiency?

Process 
Design

Circuit
Design

High
Volume
Manufacturing

Solid interaction channels are needed between design 
and manufacturing.
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Issues
• Understand and model random phenomena.

• Functional and parametric yield important, but only 
part of the picture.

• Production optimization belongs to three "spheres of 
influence":

Process Engineer

Process Designer

IC Designer

• The interaction among the three spheres of 
influence is very important.
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The 2002 Roadmap
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199719992001 2003 2006 2009 2012
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Overall Production
Efficiency up by 
~20X (!)  
from 1997 to 2012.

The main metric is “Efficiency”
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Where will the Extra Productivity Come from?

(Jim Owens, Sematech)Time

Other Productivity - Equipment, etc.

Yield Improvement

Wafer Size
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The Opportunities
Year 1997 1999 2001 2003 2006
Feature nm 250 180 150 100 70
Yield % 85 ~90 ~92 ~93 ?
Equipment utilization % 35 ~50 ~60 ~70
Test wafers % 5-15 5-15 5-15 5-15

OEE
30%

Down Un
15%Down Pl

3%
No Prod
7%

No Oper
10%

Quality
2%

Test Wafers
8%

Setup
10%

Speed
15%
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Yield Definitions

• Yield is simply the percentage of “good” product 
in a production batch.

• Yield has several components, each requiring a 
distinct set of tools to understand and improve.

• We will talk about the three main components:
– Functional (defect driven)
– Parametric (performance driven)
– Production efficiency / equipment utilization
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The Yield Problem
• Improving Yield quickly used to be a key competitive 

issue for all IC manufacturers.

• As the cost of installed equipment increases, one wants 
to amortize this cost over many ICs.

– Even on 24hour operation, equipment utilization is low.

– Limited yield is responsible for about 50% of equipment 
utilization loss.

– Yield fluctuations cause terrible planning problems.

– The problem is aggravated by frequent equipment, technology 
and design changes.

• One can say that Yield is limited by Variability
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Routine vs. Assignable Variability

• Routine Variability is the result of a process that is 
under “Statistical Control”:, i.e. follows some 
predetermined statistical distributions.

• Assignable Variability is the result of inadvertent “one 
of a kind” occurrences.
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IC production suffers from routine and
assignable variability

• Human errors, equipment  failures
– Processing instabilities
– Material non-uniformities
– Substrate non-homogeneities
– Lithography spots
– ...

• Planning and scheduling issues that 
limit equipment utilization
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Process Variability Causes Deformations

• Geometrical • Electrical
° Lateral ° Global
° Vertical ° Local
° Spot defects

Deformations have deterministic and
random components, are global and/or
local, can be independent or can interact.
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Deformations of Ideal Design

Atlas of IC Technologies - An Introduction to VLSI Processes, W. Maly, The Benjamin/Cummins Publishing Company, Inc, 1987
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Lateral Displacement In Pattern Transfer.
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Mask Misalignment
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Deformations cause Faults

Design Yield

• Functional

• Parametric

Design Yield

• Functional

• Parametric

Manufacturing Yield
• Wafer

- Probe Testing
- Final Testing

• Equipment  
Utilization

Manufacturing Yield
• Wafer

- Probe Testing
- Final Testing

• Equipment  
Utilization

• Structural faults
• Performance faults

° Soft performance faults
° Hard performance faults

Faults have an impact on Yield.
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Yield Measurements and Tests

step 1 step 2 step n

e-test packagingfunctional
test

binning/
parametric test

field installation

in-line tests
real-time

measurements

field
data

wafer fab

wafer yield die yield (functional)

die yield (parametric)

back-end

Equipment
Utilization
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Why do chips fail?

Gross
Yield
Losses

Random 
Defect
Losses

Log Scale,
Generic
DRAM
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Yield sensitivity of CMOS Gate Array

Spot Defects
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Element 
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Element 
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Process
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ContaminationAlign & 
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Align & 
registration

M
anufacturing

Wafer

GlobalLocalGlobalLocalGlobalLocal

ElectricalGeometrical

Performance FailureStructural Fail.

Yield
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Yield Sensitivity of Large DRAM

Spot Defects
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Element 
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variation

Align & 
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Align & 
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Yield Sensitivity of Bipolar Op Amp

Spikes, pipes, 
etc

Align & 
registration

Spikes, pipes, 
etc

Functio
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Element 
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D
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What limits Functional Yield?

• Gross Misalignments
• Particles
• Mask Defects
• In general, the above are considered random 

events, and their assumed distribution plays a 
profound role in decisions having to do with:
– Metrology (how often and what we measure)
– Modeling (how one can predict the occurrence of these 

events)
– Simulation (calculating how a specific IC layout will do)
– Design rules/styles to “immunize” the IC to defects
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Particles vs. Defects

• Particles come from outside the device structure

• Defects are created within the device structure

Aluminum spiking

Interconnect patterning

etc.
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Particles

Picture 26, pp 185 Yield Book
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Where do particles come from?

• People

• Material Handling

• Processing chambers
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When does a particle matter?

Exposure Etching Final Structure
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Wafer scanning for particles

• Catastrophic failures are the result of “defects”.
• Not all defects are visible.
• Often, defects are caused by visible particles.

– A great deal of effort is spent in testing process steps for particle 
generation.

• Equipment is used to scan patterned or un-patterned 
(blanket) wafers.

• Today’s sensitivity can be set to detect particles well 
under half a micron (typically as low as 0.1µm) on 
patterned wafers. 

• Testing is expensive and time consuming.

Wafer Inspection Technology Challenges for ULSI Manufacturing, S. Stokowski and M Vaez-Iravani, Characterization 
and Metrology for ULSI Technology, March 1998
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In Line Particle Detection by Wafer Scanning

Inspection systems sell at about 700M/year, and the 
best can do 40nm detection, at about 150 wafers/hour.

Bright field systems take and analyze images (slow!)

Dark field systems detect scattered light (fast!)

AOD scanner

PMT
detector

Polarizer &
spatial filter

Laser

X-Y stage motion

Double dark field
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Counting particles
Scanning a “blanket” monitor wafer. 
Diffracted light detects position and approximate size of 
particle.
“Wafer Maps” with particle locations are then loaded to 
Optical or SEM imaging tools for further analysis.

x
y

Lithography can print 1010 - 1011

resolution elements per sec.

The fastest systems can inspect 
6x108 pixels per sec.



35Lecture 1: Introduction & IC Yield

Spanos & PoollaEE290H F03

Scanning a product wafer

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

10 100 1000

Sphere diam eter (nm )

Total 
integrated 
scattered  

s ignal

PSL

Silicon

Aluminum

Particle size is deduced by 
scattered intensity. 

Imaging is only needed for 
detailed diagnostics.
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The issue of measurement planning

• Typical “suspect” processes include plasma 
etching, RTP, CVD, PVD, PECVD, etc.

• There are dozens of such steps in a process, so 
there is great demand for particle scanning.

• State of the art scanners need several minutes 
per wafer.
– One has to decide on a rational subset of wafers to 

scan. 
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The Resource Allocation Problem

Since wafer scanning is expensive, we must 
create an “optimum” plan for testing a 
meaningful allocation.

Plans can be adaptive, so that dirty wafers 
receive more scrutiny.
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Acceptance Sampling

Acceptance sampling is not a substitute for 
process control or good DFM practices.

Acceptance sampling is a general collection of 
methods designed to inspect the finished product.

How many wafers do we sample per lot? How 
many points we measure per wafer?
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Definition of a Single-Sampling Plan

P{d defectives } = f(d) = n!
d!(n-d)!

pd 1-p n-d

Pα=P d ≤c = n!
d!(n-d)!

pd 1-p n-dΣ
d=o

c
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The Problem with Wafer Maps
Wafer maps contain information that is very difficult to 
enumerate

A simple particle count cannot convey what is 
happening.
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Typical Spatial Distributions
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Two (extreme) Clustering Cases

This needs the modified Hough
transformation to detect scratches, 
while ignoring background defects.

This is an example of a diffuse cluster.
This is best detected after high density 
clusters have been removed from data.

The Development and Use of In-line Yield Estimates in Semiconductor Manufacturing, Ph.D. Dissertation, S. 
P. Cunningham, IEOR, UC Berkeley, 1995
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Spatial Wafer Scan Statistics for SPC applications

• Particle Count

• Particle Count by Size (histogram)

• Particle Density

• Particle Density variation by sub area (clustering)

• Cluster Count

• Cluster Classification

• Background Count

Whatever we use (and we might have to use more 
than one), must follow a known, usable distribution.
Whatever we use (and we might have to use more 
than one), must follow a known, usable distribution.
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In Situ Particle Monitoring Technology

Laser light scattering system for detecting particles in 
exhaust flow. Sensor placed down stream from 
valves to prevent corrosion.

chamber
Laser

Detector

to pump

Assumed to measure the particle concentration in 
vacuum
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Progression of scatterplots over time
The end-point detector failed during the ninth lot, and was 
detected during the tenth lot. 
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Time series of ISPM counts vs. Wafer Scans
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Drawing inferences from electrical test patterns

• Often one resorts to much faster (but less 
accurate) testing of electrical structures 
designed for particle detection.

• These can only be used on conductive layers, at 
the end of a process.

• Can detect shorts, opens in one layer, or shorts 
between layers.

• One must make assumptions about defect size 
and density in interpreting these results.
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Electrically testable defect structure -
Short/Open detection



49Lecture 1: Introduction & IC Yield

Spanos & PoollaEE290H F03

Probability of Failure

Open
test structure

Short
test structure

Complex,
simulated
design
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Electrically testable defect structures -
defect size detection
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Test Structure Performance
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Other Types of defect structures

Contact chains

Fallon Ladders

Charging structures

etc.
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Use of in-line yield metrology

• Wafer screening

• Machine maintenance

• Yield learning

• Modeling (next time!)

• Design fault tolerant circuits
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Functional Yield Modeling

Early Yield Models

Murhpy’s

Modified Poisson

Negative Binomial

Component Models
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Early Yield Models

Y =  ( 1 - S
100

 )N

Y = e-NAGD

Used for discrete components by
Wallmark, 1960.
(S is failures in batch of 100)

Introduced by Hofstein and Heiman
in 1963. Depends on gate area AG.
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The Basic Yield Model

Assume a constant defect density D
Assume that it takes one defect to 
kill a circuit.

Find the probability that a circuit will 
work, given D and the area A of a 
circuit.

A ∆A

P{∆A is "bad"} = D ∆A
A = n ∆A

Y = P{A is "good"} = (1 - D ∆A) = (1 - D ∆A)nΠ
1

n

ln (Y) = A
∆A

ln(1 - D ∆A) → - D A when ∆A→0

Y = e- D A



57Lecture 1: Introduction & IC Yield

Spanos & PoollaEE290H F03

Poisson and Murphy’s Yield Models

Y = e-AD

0

∞

f(D)dD

Y = 1-e-2ADo

2DoA

Y = 1-e-ADo

DoA

0 Do 2Do

Murphy 1964
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Poisson and Murphy’s Yield Models (cont)
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Modified Poisson Model

Yest (A)  = e-λ(A) = e
-λ( Ao) (A/Ao )

Yest (A)= e
-λ( Ao) (A/Ao )1-b

 = Ymeas (Ao)(A/Ao )1-b

From basic yield model.

But basic yield model is too pessimistic, mainly because
of defect clustering. So, the basic model can be modified:

Dest (A)  = Dinf (Ao) (A/ Ao )1-b

Dinf (Ao)  =  - [ lnYmeas (Ao) ] / Ao
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Fitting the Modified Poisson Model
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Negative Binomial

If f(D) follows a Gamma distribution, then:

Y =  1 + A D
α   - α

And if clustering becomes an issue, then:

Y = Yo  1 + A D
α   - α

where Yo is the “gross cluster yield”.

(α ~ 0.3 - 3)
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Negative Binomial vs Modified 
Poisson
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Component Yield Models

It is understood that as ICs are being processed in 
steps, yield losses also occur at each layer.

One can further assume that defect types are 
independent of each other. 

Y = 1 + Ai Di
αi

-αi

Π
i = 1 

M

Or, to simplify model fitting, an approximation is made:

Y = 1 + 
Ai DiΣ

i = 1

M

αt

- αt
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Fitting Yield Models by Layer
Each layer (or defect type) is measured by a defect 
monitor made for that layer.

Ypi = Yoi  1 + 
Api
Ami

 αi 
Yoi
Ymi

1/2
- 1  

- α i

gross
cluster

product

monitor

What is the “critical area”?
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Yield simulation based on Critical Area

• Yield “Modeling” refers to aggregate models for 
a given technology and design rules (λ).

• The objective of yield “Simulation” is to predict 
the functional yield of a given, specific layout 
fabricated in a known line.
– Need to know defect size and spatial distributions.
– Must take into account the specific masks, one layer 

at a time.
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The Concept of the Critical Area

Yield Simulation for Integrated Circuits, D. Walker, Kluwer Academic, 1987
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What do we need to know about particles

• Spatial distribution

• Size distribution

• Interaction of above with layout of circuit
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Typical Defect Size Distribution
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How do Defects Propagate in Process?

Effects of Defect Propagation/Growth on In-Line Defect-Based Yield Prediction, Shindo et al, IEEE, TSM, V 11, No 4, 11/1998
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How do Defects Propagate in Process?

Random

Cluster
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Defect impact simulation
• One can now simulate the “evolution” of defects 

during processing.

Efficient Macromodeling of Defect Propagation/Growth Mechanisms in VLSI Fabrication, Li et al, IEEE TSM, 
Vol 11, No 4, 11/1998
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Design Rules

• Design rules are developed to guide designers 
in matters of processing capability.

• Practical Design rules are a gross simplification 
of how an actual process behaves.

2λ
2λ
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Design Rules (cont)

Lamda (λ) based design rules allow:
• The effective summary of process behavior for 

the benefit of the designer.
• That standardization of layout design.
• The automation of scaling, design checking, etc.
• The simplification of design transitions from one 

technology to the next.
• The effective “modularization” of IC design.
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Redundancy and other DFM techniques

Design rules
Fault tolerance

Design rules

Worst Case 
design

Statistical 
Design

Digital Analog

Functional

Parametric
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Defect Tolerant Digital Designs
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Defect Tolerance Implementation Requirements

• No or very limited impact on performance 
visible to the user.

• No additional manufacturing steps.

• Defective redundant elements replaceable 
by other redundant elements.
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Typical Memory Faults
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Redundancy in Memory ICs

Defective row / column replacement
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The problem with fuse links

• Electrical fuses are not very reliable.
• Laser trimming is expensive.
• Best techniques involve non-volatile memory 

programming.
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Error Correcting Code Example

0 63
...

Data Bits Parity Bits

Parity allows correction of 16 kilobit failures out of 1 megabit.

Consecutive bits in a word are stored at least 15 cells apart

i i+1

0 6
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Associative Approach
Sometimes, instead of replacing single rows or columns, 
one has to replace larger blocks destroyed due to wide 
fault clusters.

In this scheme the address of the block to be replaced is 
stored in a permanent memory.

Access time increase 2%. Power increase 0.6%, 
substantial area increase (27% for 1Mbit).
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Partially Good Chips

A 1Mbit chip can be sold as a usable 0.5 
Mbit, or even a usable 0.25Mbit chip.
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Yield Modeling for Fault Tolerant Circuits
Assuming a simple Poison Model:
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Yield Model for Fault Tolerant Circuits.

Y= Yo(1+D/α)-α

αM,N = Prob {Exactly M out of the N modules are fault-free}

Y= Yo Σ
M=N-R

N
αM,N

Problem: what is the clustering parameter α of the module?

αM,N= Σ
k=0

N-M
(-1)k

N-M

k

N

M
1+(M+k)D

α
-α

For non-fault tolerant designs:

For fault tolerant chips that have N modules with R spares:
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Effective Yield vs. Amount of Redundancy

“Effective” Yield takes into account Good die / wafer
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Competitive Semiconductor Manufacturing Study

The Berkeley CSM survey is a comprehensive “field” 
study analyzing the elements of manufacturing 
competitiveness:

Technology, Integration, Automation, Process Control, 
Personnel Organization, Planning & Scheduling, 
Costing & Accounting.

The focus is on “front end” production, digital ICs. 

35 fabs around the world were targeted for 3-day visits 
by a multidisciplinary team of researchers.

Information is shown for 16 fabs.

CSM, 3rd Report on the Results of the Main Phase, CSM-31, 8/1996
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Line Yield, Memory
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Line Yield, CMOS Logic
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Memory Defect Density, 0.45-0.6µm

Y = [ (1-e-AD)/AD ]2
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Logic Defect Density, 0.7-0.9µm CMOS

Y = [ (1-e-AD)/AD ]2
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Logic Defect Density 1.0-1.25µm CMOS

Y = [ (1-e-AD)/AD ]2
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A More Dynamic View of Yield

• The Yield of each new process-product combination 
follows a trajectory called the yield learning curve.

• Time to yield for a new product can have huge 
implications. 

• Also, field reliability is often related to yield.

• 1 Quarter sooner => 1 billion more sales over a 10 
quarter lifetime.

Time

Yield
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A Comprehensive Model from the Field Study

When all the factors were examined, an 
empirical model that predicted yield contained 
the following factors:

W=log Y
1 - Y

=

.38 - (.96)(dieSize) + (.37)log( ProcessAge) -(.28)( PhotoLink)
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Survey Residuals
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Survey Residuals (cont)
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What Drives Yield Learning Speed?

W j = α0j +α1j (dieSize) +α2j log( ProcessAge)

For each factory, this model was used to calibrate 
learning speed by the α2j coefficient.

Due to the small sample size, analysis was done 
with the help of contingency tables.
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What Drives Yield Learning Speed? (cont)
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In Summary
Yield modeling, measurement and control is vital in semiconductor 
manufacturing.

“Process Control” has interesting technical, as well as cultural aspects.

Yield learning is driven by competition and made even because of an 
ever improving equipment base.

Future advances will further decrease cycle time, increase wafer and 
die yield, and give more uniform performances for current geometries.

It will be a serious challenge to bring these improvements to the factory 
of 2010 with 0.03µm geometries and >>12 inch wafers.

Next frontier for yield improvement: Parametric Considerations and 
Equipment Utilization!


