CUSUM, MA and EWMA Control Charts

Increasing the sensitivity and getting ready for automated control:

The Cumulative Sum chart, the Moving Average and the Exponentially Weighted Moving Average Charts.

Lecture 14: CUSUM and EWMA

EE290H F03

Spanos & Poolla

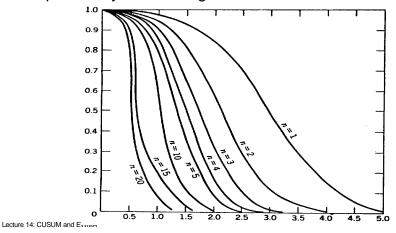
1

Shewhart Charts cannot detect small shifts

The charts discussed so far are variations of the *Shewhart* chart: <u>each new point depends only on one subgroup</u>.

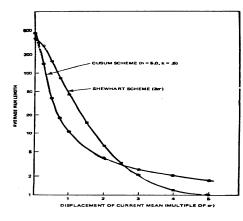
Shewhart charts are sensitive to large process shifts.

The probability of detecting small shifts fast is rather small:



EE290H F03

Cumulative-Sum Chart If each point on the chart is the *cumulative history* (integral) of the process, systematic shifts are easily detected. Large, abrupt shifts are not detected as fast as in a Shewhart chart.



CUSUM charts are built on the principle of Maximum Likelihood Estimation (MLE).

Lecture 14: CUSUM and EWMA

EE290H F03

Spanos & Poolla

3

Maximum Likelihood Estimation

The "correct" choice of probability density function (pdf) moments maximizes the collective likelihood of the observations.

If x is distributed with a pdf(x, θ) with unknown θ , then θ can be estimated by solving the problem:

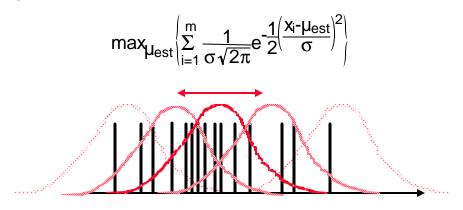
$$max_{\theta}\left[\sum_{i=1}^{m} pdf(x_{i},\theta)\right]$$

This concept is good for estimation as well as for comparison.

EE290H F03

Maximum Likelihood Estimation Example

To estimate the mean value of a normal distribution, collect the observations x_1, x_2, \dots, x_m and solve the maximization problem:



Lecture 14: CUSUM and EWMA

EE290H F03

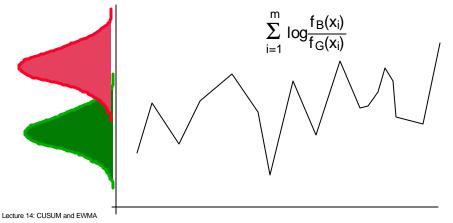
Spanos & Poolla

5

MLE Control Schemes

If a process can have a "good" or a "bad" state (with the control variable distributed with a pdf fG or fB respectively).

This statistic will be small when the process is "good" and large when "bad":



EE290H F03

MLE Control Schemes (cont.)

Note that this counts from the beginning of the process. We choose the best k points as "calibration" and we get:

$$S_{m} = \sum_{i=1}^{m} \log \frac{f_{B}(x_{i})}{f_{G}(x_{i})} - \min_{k < m} \sum_{i=1}^{k} \log \frac{f_{B}(x_{i})}{f_{G}(x_{i})} > L$$

or
$$S_{m} = \max \left(S_{m-1} + \log \frac{f_{B}(x_{m})}{f_{G}(x_{m})}, 0\right) > L$$

This way, the statistic S_m keeps a cumulative score of all the "bad" points. <u>Notice that we need to know what the "bad" process is!</u>

Lecture 14: CUSUM and EWMA

EE290H F03

Spanos & Poolla

7

The Cumulative Sum chart

If θ is a mean value of a normal distribution, is simplified to:

$$S_m = \sum_{i=1}^m (\overline{x}_i - \mu_0)$$

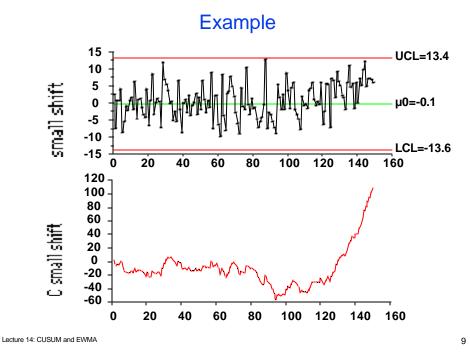
where \mathbf{m}_0 is the target mean of the process. This can be monitored with V-shaped limits.

Advantages

The Cusum chart is very effective for small shifts and when the subgroup size n=1.

<u>Disadvantages</u>

The Cusum is relatively slow to respond to large shifts. Also, special patterns are hard to see and analyze.

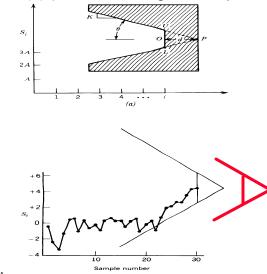


EE290H F03

Spanos & Poolla

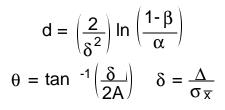
The CUSUM design

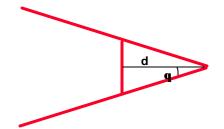
Need to set L(0) (i.e. the run length when the process is in control), and $L(\delta)$ (i.e. the run-length for a *specific* deviation).



Lecture 14: CUSUM and EWMA

The CUSUM design





Lecture 14: CUSUM and EWMA

EE290H F03

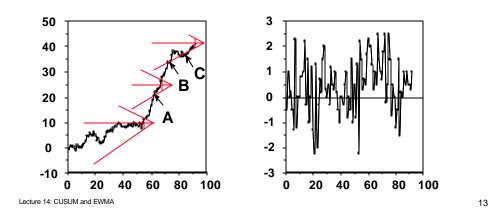
Spanos & Poolla

11

(su		L(0) = Avecage true length when process is in countrol.					
Ę.			50	100	200	300-	400
Wi B		$\langle A/\pi_s angle$ tan k ,	0.125			0.195	
ų.	0.25	e	47.6			46.2	
аrd		£(0.27)	26.J			71.0	
pu		(A, σ_i) for θ	D 21	0.28	0.29	0.28	0.73
Deviation from Target Value (in standard deviations)	0.50	a	17.5	18.2	22.4	24.7	27.3
		L(0.5)	10.2	19.0	24.0	26.7	29.0
		1.1/m/) 160 B	0.275	0.175	0.375	0.375	0.275
	0.7:	a	9.2	31 T	13.8	15,0	16.7
		L(0.75)	8.9	11.5	13,4	14,5	15.7
		$(A/\sigma_s) \cos \theta$	d.5D	0.50	0.50	0.50	0.50
	1.6	2	5.7	6.9	6.2	90	9.6
Ĕ		L(1.0)	61	74	87	P4 .	10.0
ţ		(Z/h.) Init (2	0.75	43.7.5	0.75	0.55	0.75
ion.	1.5	1 0	2.7	3.4	3.9	4.3	4.5
iat		641.51	3.4	4.0	4.6	5.U	÷.2
j.	-	i di esti tan M		1.0	1.0	2.0	1.0
-	2.0	2	1.5	1.9	22	21	1.1
÷.		1.(2.0)	2.26	2.63	296	3.1.5	۹,۹
Lecture 14: CUSUM and E	WMA						

CUSUM chart of furnace Temperature difference

Detect 2C°, $\sigma = 1.5$ C°, $\alpha = .0027 \beta = 0.05$, $\theta = 18.43^{\circ}$, d = 6.6



EE290H F03

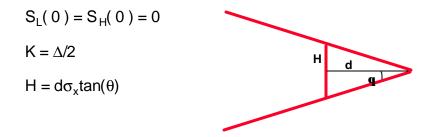
Spanos & Poolla

Tabular CUSUM

A tabular form is easier to implement in a CAM system

$$S_{H}(i) = \max[0, \overline{x}_{i} - (\mu_{o} + K) + S_{H}(i - 1)]$$

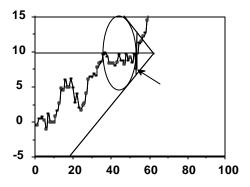
 $S_{L}(i) = \max[0, (\mu_{o} - K) - \overline{x}_{i} + S_{L}(i - 1)]$



Lecture 14: CUSUM and EWMA

Cusum Enhancements

To speed up CUSUM response one can use "modified" V masks:



Other solutions include the application of Fast Initial Response (FIR) CUSUM, or the use of combined CUSUM-Shewhart charts.

Lecture 14: CUSUM and EWMA

EE290H F03

Spanos & Poolla

15

General MLE Control Schemes

Since the MLE principle is so general, control schemes can be built to detect:

- single or multivariate deviation in means
- deviation in variances
- deviation in covariances

An important point to remember is that MLE schemes need, implicitly or explicitly, a definition of the "bad" process.

The calculation of the ARL is complex but possible.

EE290H F03

Control Charts Based on Weighted Averages

Small shifts can be detected more easily when multiple samples are combined.

Consider the average over a "moving window" that contains w subgroups of size n:

$$M_{t} = \frac{\overline{x}_{t} + \overline{x}_{t-1} + \dots + \overline{x}_{t-w+1}}{W}$$
$$V(M_{t}) = \frac{\sigma^{2}}{\Pi W}$$

The 3-sigma control limits for Mt are:

UCL =
$$\overline{x} + \frac{3\sigma}{\sqrt{nw}}$$

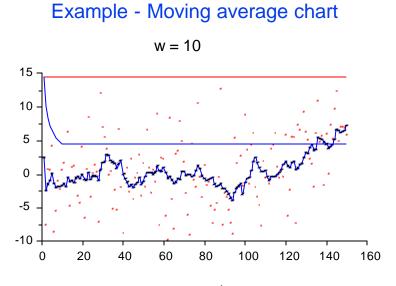
LCL = $\overline{x} - \frac{3\sigma}{\sqrt{nw}}$

Limits are wider during start-up and stabilize after the first w groups have been collected.

Lecture 14: CUSUM and EWMA

EE290H F03

17



sample

The Exponentially Weighted Moving Average

If the CUSUM chart is the sum of the entire process history, maybe a weighed sum of the <u>recent</u> history would be more meaningful:

$$z_t = \lambda \overline{x}_t + (1 - \lambda) z_{t-1} \quad 0 < \lambda < 1 \quad z_0 = \overline{x}$$

It can be shown that the weights decrease geometrically and that they sum up to unity.

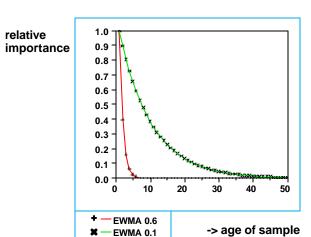
$$z_{t} = \lambda \sum_{j=0}^{t-1} (1 - \lambda)^{j} \overline{x}_{t-j} + (1 - \lambda)^{t} z_{0}$$
$$UCL = \overline{x} + 3 \sigma \sqrt{\frac{\lambda}{(2 - \lambda) n}}$$
$$LCL = \overline{x} - 3 \sigma \sqrt{\frac{\lambda}{(2 - \lambda) n}}$$

Lecture 14: CUSUM and EWMA

EE290H F03

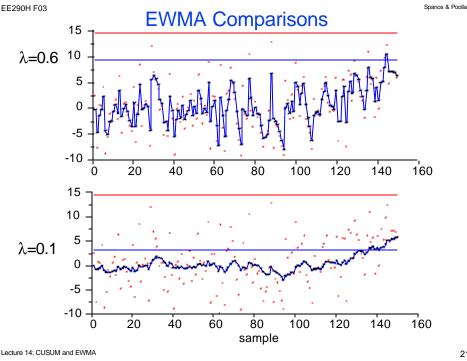
Spanos & Poolla

19



Two example Weighting Envelopes

EE290H F03



EE290H F03

Spanos & Poolla

21

Another View of the EWMA

- The EWMA value z is a forecast of the sample at the t+1 period.
- Because of this, EWMA belongs to a general category of filters that are known as "time series" filters.

$$\widehat{x}_{t} = f(x_{t-1}, x_{t-2}, x_{t-3}, ...)$$
$$\widehat{x}_{t-x_{t}} = a_{t}$$
Usually:
$$\widehat{x}_{t} = \sum_{i=1}^{p} \phi_{i}x_{t-i} + \sum_{j=1}^{q} \theta_{j}a_{t-j}$$

- The proper formulation of these filters can be used for forecasting and feedback / feed-forward control!
- Also, for quality control purposes, these filters can be used to translate a non-IIND signal to an IIND residual...

Summary so far..

While simple control charts are great tools for visualizing the process, it is possible to look at them from another perspective:

Control charts are useful "summaries" of the process statistics.

Charts can be designed to increase sensitivity without sacrificing type I error.

It is this type of advanced charts that can form the foundation of the automation control of the (near) future.

Next stop before we get there: <u>multivariate</u> and <u>model-based</u> SPC!

Lecture 14: CUSUM and EWMA