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CUSUM, MA and EWMA Control Charts

Increasing the sensitivity and getting ready for 
automated control:

The Cumulative Sum chart, the Moving 
Average and the Exponentially Weighted 
Moving Average Charts.
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Shewhart Charts cannot detect small shifts

Fig 6-13 pp 195 Montgomery.

The charts discussed so far are variations of the Shewhart
chart: each new point depends only on one subgroup.

Shewhart charts are sensitive to large process shifts.

The probability of detecting small shifts fast is rather small:
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Cumulative-Sum Chart
If each point on the chart is the cumulative history (integral) 
of the process, systematic shifts are easily detected. Large, 
abrupt shifts are not detected as fast as in a Shewhart chart.

CUSUM charts are built on the principle of Maximum 
Likelihood Estimation (MLE).
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Maximum Likelihood Estimation

maxθ

m

Σ
i=1

pdf(xi,θ)

The "correct" choice of probability density function (pdf) 
moments maximizes the collective likelihood of the 
observations.

If x is distributed with a pdf(x,θ) with unknown θ, then θ can 
be estimated by solving the problem:

This concept is good for estimation as well as for comparison.
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Maximum Likelihood Estimation Example
To estimate the mean value of a normal distribution, collect 
the observations x1,x2, ... ,xm and solve the maximization 
problem:

maxµest

m
Σ
i=1

1
σ 2π

e-1
2

xi-µest
σ

2
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MLE Control Schemes

m

Σ
i=1

log
fB(xi)
fG(xi)

If a process can have a "good" or a "bad" state (with the 
control variable distributed with a pdf  fG or  fB respectively).

This statistic will be small when the process is "good" and 
large when "bad":
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MLE Control Schemes (cont.)

Sm =
m

Σ
i=1

log
fB(x i)
fG(x i)

- mink < m

k

Σ
i=1

log
fB(x i)
fG(x i)

> L

or

Sm = max (Sm-1+log
fB(xm)
fG(xm)

, 0) > L

Note that this counts from the beginning of the process. We 
choose the best k points as "calibration" and we get:

This way, the statistic Sm keeps a cumulative score of all the 
"bad" points. Notice that we need to know what the "bad" 
process is!
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The Cumulative Sum chart

Sm =
m

Σ
i=1

(x i - µ0)

Advantages

The Cusum chart is very effective for small shifts and when 
the subgroup size n=1. 

Disadvantages

The Cusum is relatively slow to respond to large shifts. 
Also, special patterns are hard to see and analyze.

If θ is a mean value of a normal distribution, is simplified to:

where µ0 is the target mean of the process. This can be 
monitored with V-shaped limits.
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Example
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The CUSUM design

Figure 7-3 Montgomery pp 227

Need to set L(0) (i.e. the run length when the process is in 
control), and L(δ) (i.e. the run-length for a specific deviation).
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The CUSUM design

d = 2
δ 2

ln
1- β
α

θ = tan -1 δ
2A

δ = ∆
σ x

d
θ
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ARL vs. Deviation for CUSUM
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CUSUM chart of furnace Temperature difference
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Detect 2Co, σ =1.5Co, α=.0027 β=0.05, θ = 18.43o, d = 6.6
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Tabular CUSUM
A tabular form is easier to implement in a CAM system

SH( i ) = max [ 0,  xi - ( µo + K ) + SH( i - 1 ) ]

SL( i ) = max [ 0,  ( µo - K ) - xi + SL( i - 1 ) ]

SL( 0 ) = SH( 0 ) = 0

K = ∆/2

H = dσxtan(θ)
d

θ

H



Lecture 14: CUSUM and EWMA

Spanos & PoollaEE290H F03

15

Cusum Enhancements

Other solutions include the application of Fast Initial 
Response (FIR) CUSUM, or the use of combined CUSUM-
Shewhart charts.

To speed up CUSUM response one can use "modified" V 
masks: 
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General MLE Control Schemes

Since the MLE principle is so general, control 
schemes can be built to detect:

• single or multivariate deviation in means

• deviation in variances

• deviation in covariances

An important point to remember is that MLE 
schemes need, implicitly or explicitly, a definition of 
the "bad" process.

The calculation of the ARL is complex but possible.
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Control Charts Based on Weighted Averages

The 3-sigma control limits for M t are:

Mt = xt + xt-1 + ... +xt-w+1
w

V(Mt) = σ2
n w

  

UCL = x + 3 σ
n w

LCL = x - 3 σ
n w

  

Small shifts can be detected more easily when multiple 
samples are combined.

Consider the average over a "moving window" that contains 
w subgroups of size n:

Limits are wider during start-up and stabilize after the first w 
groups have been collected.
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Example - Moving average chart
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The Exponentially Weighted Moving Average

If the CUSUM chart is the sum of the entire process history, 
maybe a weighed sum of the recent history would be more 
meaningful:

zt = λxt + (1 - λ)zt -1       0 < λ < 1 z0 = x

It can be shown that the weights decrease geometrically 
and that they sum up to unity.

zt = λ ( 1 - λ )j x t - j + ( 1 - λ )t z0Σ
j = 0

t - 1

UCL = x + 3 σ λ
( 2 - λ ) n

LCL = x -3 σ λ
( 2 - λ ) n

Lecture 14: CUSUM and EWMA

Spanos & PoollaEE290H F03

20

Two example Weighting Envelopes
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EWMA Comparisons
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Another View of the EWMA
• The EWMA value zt is a forecast of the sample at the t+1 

period. 
• Because of this, EWMA belongs to a general category of 

filters that are known as “time series” filters.

• The proper formulation of these filters can be used for 
forecasting and feedback / feed-forward control!

• Also, for quality control purposes, these filters can be used 
to translate a non-IIND signal to an IIND residual...

xt = f ( xt - 1, xt - 2, xt - 3 ,... )
xt- xt = at

Usually:

xt = φixt - iΣ
i = 1

p

+ θjat - jΣ
j = 1

q
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Summary so far..

While simple control charts are great tools for visualizing 
the process,it is possible to look at them from another 
perspective:

Control charts are useful “summaries” of the process 
statistics.

Charts can be designed to increase sensitivity without 
sacrificing type I error.

It is this type of advanced charts that can form the 
foundation of the automation control of the (near) future.

Next stop before we get there: multivariate and model-
based SPC!


