In-chamber and on-wafer sensors

A Paradigm Shift

Lecture 20: On -Wafer Sensors

EE290H F03

Spanos & Poolla

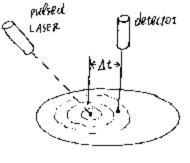
1

Overview

- Exact chamber environment control is relatively new
- Various sensors (pressure, gas flow, gas composition, temperature) are needed to accomplish it.
- An interesting transition to "on-wafer" sensors holds much promise...

EE290H F03

Thermocouples


operating principle Peltier-Seebeck effect, up to 300	00° C	
T gradient along wires of different materials develop different emf		
emf measures junction T		
platinum rhodium alloy, or silicon	based Filer wincow Agenuic	
sensitivity 100-200mV/°K	Bert alcontair typesy mail	
 problems 	Mumbrane 12m	
big problems with shield design radiative effects	Cold Art con part	
low signal need amplifiers or u	se thermopile	
invasive		
gas <i>T</i> measurement is very hard	, especially < 10 ⁻⁴ torr	
comments		
inexpensive, low drift	low bandwidth	
accuracy ~+/- 5°C at 800°C	where do you want to measure T?	
Lecture 20: On -Wafer Sensors	3	

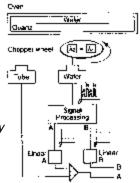
EE290H F03

Spanos & Poolla

Acoustic Wave sensors

- operating principle
 - acoustic wave is transmitted through body
 - surface and internal waves propagate through body at T dependent speed
 - interference with source gives beats
 - beat frequency determines T
- issues
 - implementation difficulty
 - invasive
 - calibration

EE290H F03


Pyrometry

- operating principle
 - hot objects radiate
 - radiation is wavelength dependent
 - radiation model for black bodies (Planck's Law)

$$R_{I} = \frac{37418}{I^{5} (e^{1438\% IT} - 1)}$$

 λ in microns, T in ${}^{\circ}$ K, R_{λ}

- for non-black bodies need to account for emissivity
- issues
 - surface properties affect radiation
 - multiple internal reflections
 - emissivity is wavelength and geometry dependent
 - can change during processing
 - calibrations via thermocouples, difficult

Lecture 20: On -Wafer Sensors

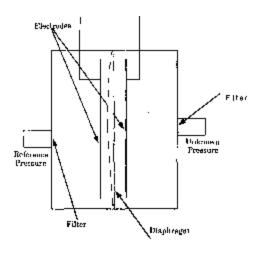
EE290H F03

Pressure Sensors

- direct gauges
 - displacement of a solid or liquid surface
 - capacitance manometer, McLeod pressure transducer
- indirect gauges
 - measurement of a gas related property
 - momentum transfer, charge generation
- huge range of available sensors
 - cost
 - sensitivity
 - range

Spanos & Poolla

5

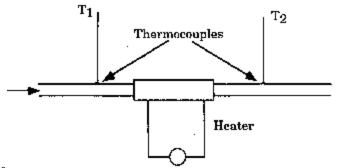

7

Spanos & Poolla

EE290H F03

Capacitance manometer

- basic idea
 - pressure differential causes displacement of diaphragm
 - sense capacitance change between diaphragm and fixed electrode
 - resolution 10⁻² % at 2 hertz and 10⁻³ torr



Lecture 20: On Wafer Sensors

EE290H F03

Gas flow meters

- differential pressure meters
- thermal mass flow meters
 - mass flow = $K / (T_1 T_2)$
 - K depends on specific heat of gas etc.
 - must be calibrated for different gases
 - accuracy ~ 1 sccm at flows of 40 sccm
 - low bandwidth because of thermal inertia

Mass Spectrometers

two types

- flux analyzers : sample gas through aperture
- partial pressure sensors : analysis in exhaust stack
- issues
 - recombination in mass spec tube changes
 - indistinguishable species : (ex: CO, N₂ and Si have same amu (28))
 - pressure measurements are removed from processing chamber

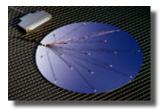
Lecture 2	0: On -Waf	er Sensors
-----------	------------	------------

EE290H F03

RGA

basic idea special kind of mass spectrometer measures gas compositions works at low vacuum < 10⁻⁵ torr ion beam is produced from gas sample by e-bombardment beam is collimated by electric fields *q/m* ratio of ions determines bending in *B* field B Flate detection of ions via a Faraday cup 00 ION'S ₹/n small issues ø A depends en Я quadrupole (magnetless design) á very noisy !! good for diagnostics can withstand 500 °C can also be used at higher pressures with differential pumps mass range 50 amu, resolution 2 amu, Lecture 20: On Wafer Sensors

10


Spanos & Poolla

9

How about placing sensors on the wafer???

Sensarray products

Lecture 20: On Wafer Sensors

EE290H F03

Spanos & Poolla

Calibration is an issue...

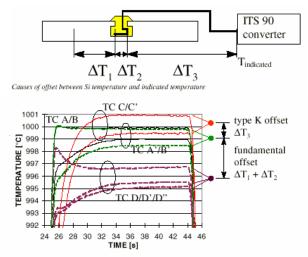
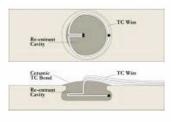
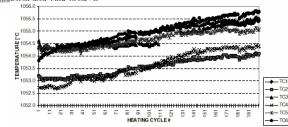



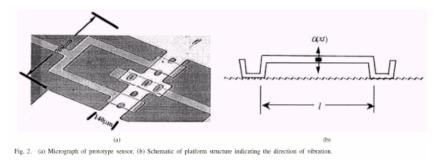
Fig. 5: Temperature vs. Time for the 9 TC's used in the isothermal cavity. TC's A/A' (shield) are the thin full lines. TC's B/B' (top wafer) are the thin dashed lines. The thermocouples TC A and TC B, used for feedback control show a very good match with the 1000° setpoint. TC C/C' (R-type, top wafer) are the thick full lines. TCD/D/D' (K-type 1530, outside cavity) are the dashed thick lines. TC's D/D/D'' show an average temperature that is 3.35°C below the average temperature of TC B/B. This is the "fundamental" offset of a 1530 structure in a double side heated RTP system at 1000°C.


Long Term Reliability also an Issue...

TC Wire Ceramic TC Bond Re-entrant

with alumina based cement (the bond area).

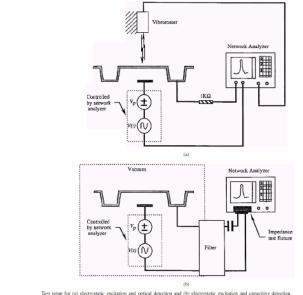
Fig. 1.2: In the 1501 structure, the thermocouple is Fig. 1.1: In the new 1530 structure, each lead makes a separate 180 degree rotation around the mounted in the center of a reentrant cavity, filled edge and the leads are welded at the opposite side in an undercut area. close to the Si.


2: Repeatability of thermocouples "1530" during 200 consecutive heating cycles with process P1050 (nominal 1050°C for 20 s), out moving the wafer (wafer #14). The upward drift is probably related to the formation of "haze" on the wafer. Fi Lecture 20: On Wafer Sensors

13

Spanos & Poolla

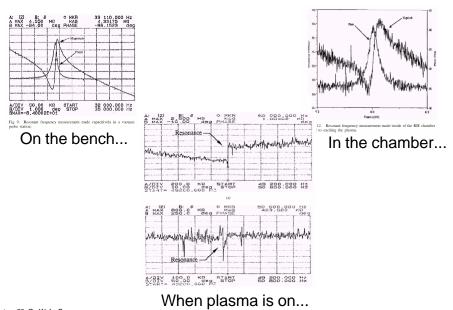
On-Wafer Etch Rate by Resonant Structure



Co : C

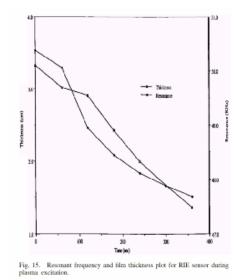
Equivalent electrical circuit for micromachined platform.

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 11, NO. 2, MAY 1998 A Novel In Situ Monitoring Technique for Reactive Ion Etching Using a Surface Micromachined Sensor Michael D. Baker, Frances R. Williams, Student Member, IEEE, and Gary S. May, Senior Member, IEEE


Remote reading of resonant sensor

Lecture 20: On Wafer Sensors

EE290H F03


Noise is the biggest problem...

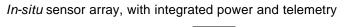
Lecture 20: On Wafer Sensors

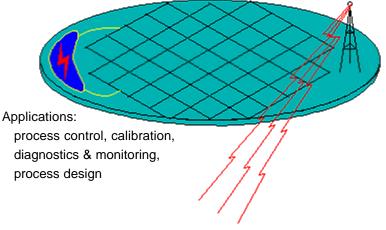
15

Innovative

noisy

intrusive


may contaminate...


Lecture 20: On Wafer Sensors

EE290H F03

Spanos & Poolla

Our Vision

Issues

• Sensor arrays

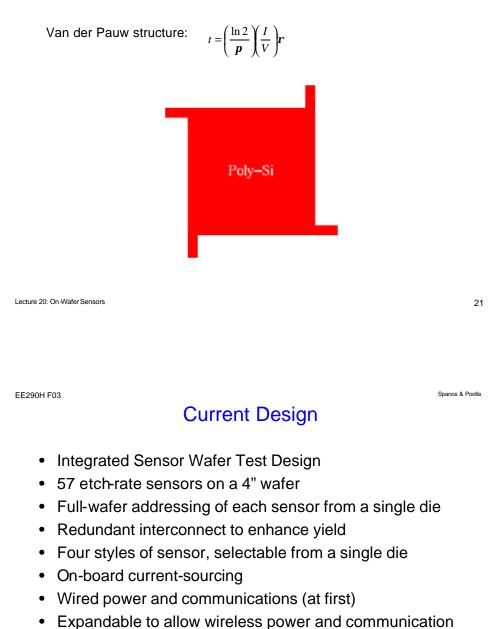
- inexpensive, modular
- environmentally isolated
- transparent to wafer handling robotics
- on-board power & communications

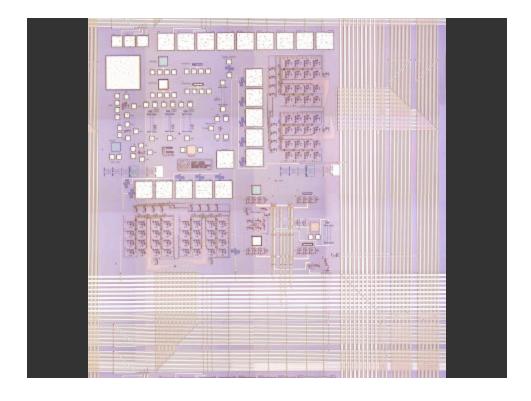
· Operating mode

- no equipment modifications !!
- Smart "dummy" wafer for in-situ metrology

Lecture 20: On Wafer Sensors

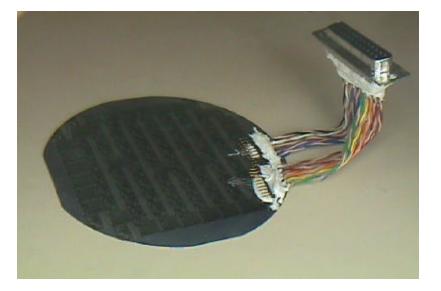
EE290H F03


Test Case: Etch Rate


- Onboard etch-rate sensor for plasma etch
 - many sensor points on a wafer
 - accurate film thickness measurement
 - real-time data available
 - etch-friendly materials
 - wired power and communications (for now)

Spanos & Poolla

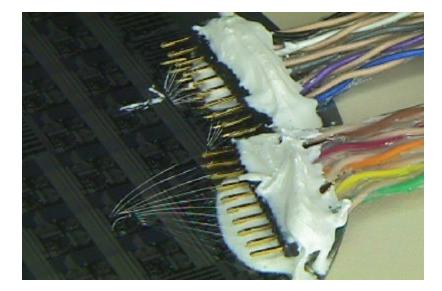
19



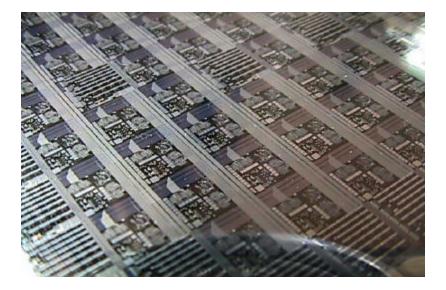
Experimental Procedure

- · Bond wires to wafer
 - solder wires to "strip header"
 - glue header to wafer edge
 - wire bond from header to wafer's bond pads
- Verify operation on bench
- Place wafer in XeF₂ Chamber
 - Measure film-thickness / etch-rate in real time
 - Calibrate using Nanospec thickness measurements

Pictures


Lecture 20: On -Wafer Sensors

25


Spanos & Poolla

EE290H F03

Pictures

Pictures

Lecture 20: On -Wafer Sensors

27

Pictures

EE290H F03

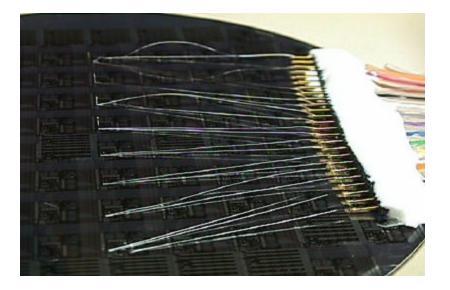
Pictures

EE290H F03

- Lecture 20: On Wafer Sensors

- Individual (disconnected) sensors still work
- · Individual circuit elements work perfectly
- Overall circuit doesn't work
 - Most likely due to flaw in decoder circuit, either due to yield problems or design flaw

Results


 \Rightarrow Wire directly to sensors

EE290H F03

Spanos & Poolla

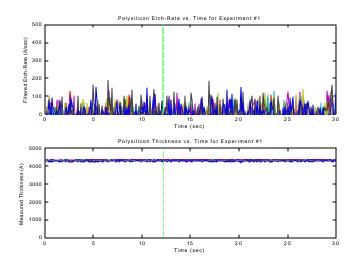
29

Pictures

Lecture 20: On -Wafer Sensors

31

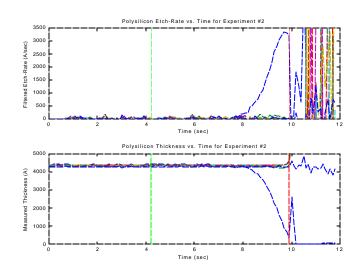
Spanos & Poolla


Results
8 sensors (in a row) wired together in *series*Everything works perfectly! *In-Situ* XeF₂ test performed

- XeF₂ etch rate much too fast (~0.2µm/sec)
- Sensor structure only 0.45 μ m thick, gone in 2 sec
- Sensors wired in series so when one etches through, all measurements stop
- \Rightarrow Data collected during etch, but no calibration available

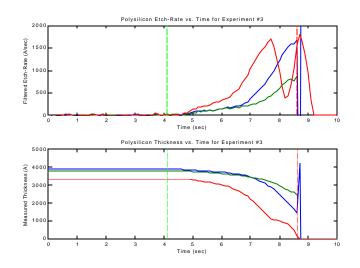
EE290H F03

Spanos & Poolla



Lecture 20: On Wafer Sensors

EE290H F03

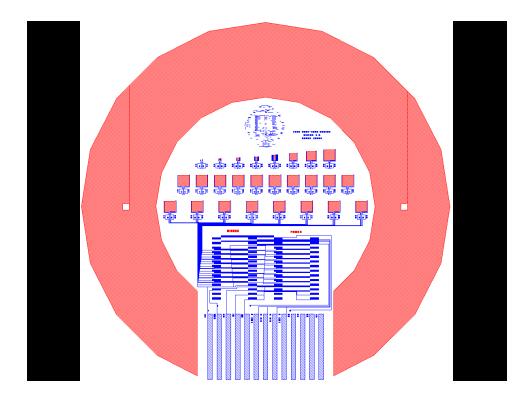


Lecture 20: On -Wafer Sensors

Spanos & Poolla

Data - Etch #3

Lecture 20: On Wafer Sensors

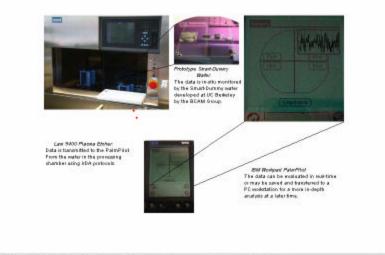

EE290H F03

Spanos & Poolla

35

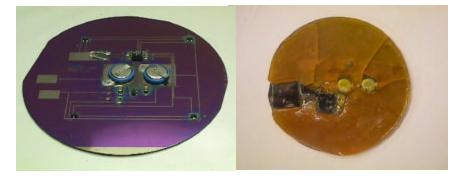
Plan

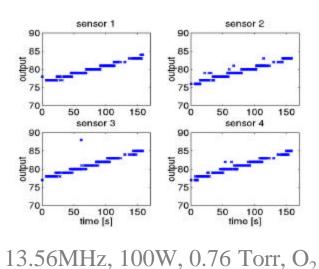
- Design new sensor wafer with no onboard electronics, only sensors
- Simple process ⇒ one week turnaround time instead of one year
- Add several features
 - Polysilicon "guard ring" around sensors to reduce XeF₂ etch rate by "loading" the etcher
 - Larger sensors to allow in-situ reflectometry
 - Clip-on wires to decrease time-to-experiment
 - Parallel connection of sensors, for better reliability



How about completely wireless???

PalmPilot IrDA Smart-Dummy Wafer Demo




EE290H F03

Spanos & Poolla

"Smart dummy" developed in 1998

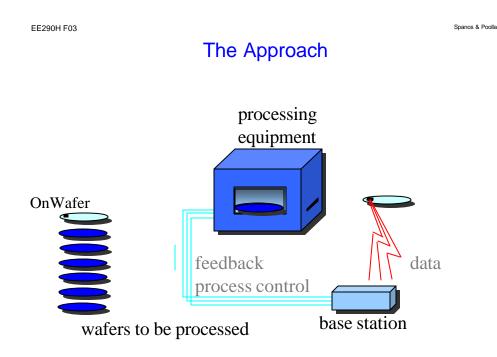
- Developed and tested at the UC Berkeley Microfabrication Laboratory.
- 4 sensors, wafer covered with layer of epoxy
- LED used for real-time, one-way transmission

First Test results in plasma, 1999


Lecture 20: On Wafer Sensors

EE290H F03

An Update on OnWafer Sensors


- OnWafer technologies Inc, a <u>Berkeley</u> startup, was founded in 2000.
- Today OnWafer products are in use in most of the major fabs around the world, and by most the major tool makers (LAM, Applied, TEL, Nikon).

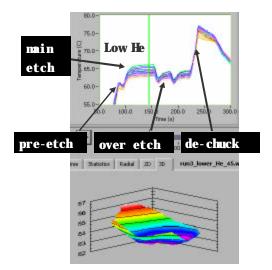
41

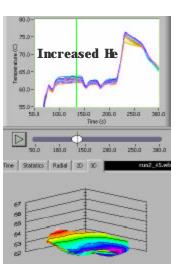
Present OnWafer System

Lecture 20: On Wafer Sensors

EE290H F03

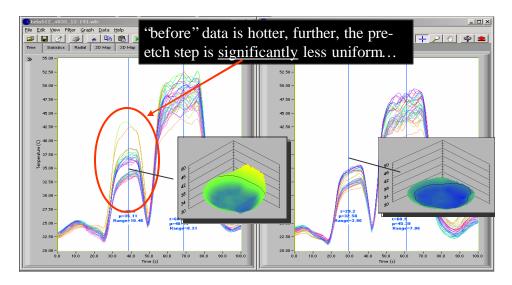
PlasmaTemp SensorWafer



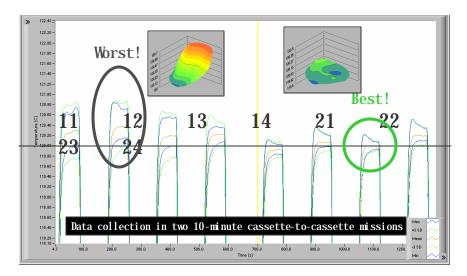

- 42 sensors/wafer, 1Hz
- 0.5 °C accuracy
- Rechargeable.
- Functional up to 140 °C, several kW RF
- · Suitable for oxide/poly plasma etch
- Non-contaminating, cleanable and reusable

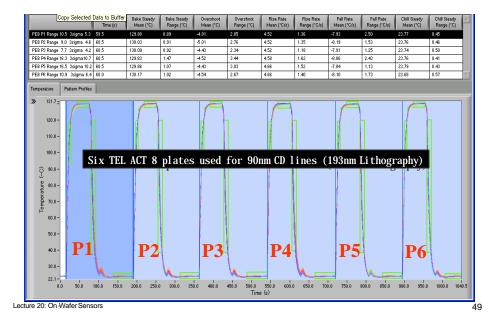
Lecture 20: On -Wafer Sensors

EE290H F03


Example - Process Monitoring of 200mm Poly Etching

Lecture 20: On -Wafer Sensors

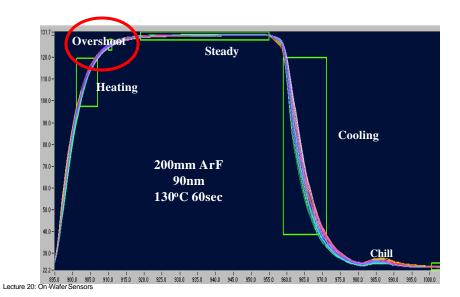

Example - Gas flow trouble in TEL DRM Etcher



Lecture 20: On -Wafer Sensors

47

EE290H F03 Example - Comparison between 8 PEB plates on a 193nm wafer track



On-Wafer PEB / CD Analysis

EE290H F03

Spanos & Poolla

Analyzing PEB Plates using BakeInfo

50