Next Time on Parametric Yield

- Current and Advanced DFM techniques
 - Worst Case Files
 - The role of process simulation (TCAD)
 - Complete Process Characterization
 - Statistical Design
- The economics of DFM

Lecture	3:	Parametric	Yield	Closeout	

EE290H F03

Spanos & Poolla

1

What Drives "Worst Case" Analysis?

- Basically, optimize an inverter design...
- ... then, since most designs are just combinations of inverter-like gates...
- ...it follows that the entire design would be OK even at the extreme points of process variation!

Simple Digital Worst Case

 I_{dsat} sets power and speed in digital logic, so the extremes of I_{dsn} and I_{dsp} set the "performance" spread.

- Method
 - Identify typical, fast and slow N, P.
 - Extract the respective process parameters.
 - Name the cases TT, SS, FF, SF, FS, respectively.
 - Make sure performance meets specs at extremes.

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

3

- Problems
 - It implies that the yield body is convex.
 - The Box might be unnecessarily big (over-design).
 - Idsat extremes do not always map to performance extremes.
 - Local variability is ignored (under-design).

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

5

Table Driven Digital Worst Case

N and P device behavior is highly correlated!

Method

- Use table to relate process variability to Idsat deviations.
- · Identify extremes through measurements.
- Extract the process parameters for each.
- Call them TT, SS, FF, SF, FS, respectively.
- Make sure performance goals are met by all.

EE290H F03

Table Driven Worst Case (cont.)

- Problems
 - It still implies that the Yield Body is convex.
 - Idsat extremes do not always map to the actual performance spread.
 - Local variability is ignored (under-design).

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

7

Working with "Complete" Parameter Sets

- Do not just focus on Idsat.
- Assume that all process parameters are varying. Independence cannot be assumed - use Principal Component Analysis (PCA) to transform the Problem.
- Method
 - Extract process parameters from a population of devices.
 - Find the correlation matrix of the process parameters.
 - Apply PCA to transform to an independent parameter space.
 - Use Constrained optimization to find the performance extremes (space is nicely convex).

EE290H F03

Spanos & Poolla

EE290H F03

Spanos & Poolla

9

Working with "Reduced" Parameter Sets

- Assume that only few process parameters (V_{fb}, T_{ox}, L, W) and operational parameters (V_{dd}, T) are varying independently. (No PCA necessary!)
- Use circuit simulation to define extremes.
- Method
 - Develop special "statistical" device model.
 - Perform n+1 circuit simulations at extremes.
 - Establish linear approximation of yield body.
 - Integrate Yield numerically.
 - (Find Yield gradient, optimize yield)
 - (Non-linear modeling and complex experimental designs also possible)

Reduced Parameter Sets (cont.)

- Special device modeling considerations.
- Linear approximations good for high yield only.
- Local variability is ignored (no analog designs!)

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

11

Modern Worst Case Files...

- We now fully realize that the device level worst case files are just an intermediate abstraction to capture the process variability.
- We also know that process parameters are highly correlated.
- So, state-of-the art techniques attempt to approximate the "ellipse" that typically describes the distribution of device parameters.

Modern Worst Case files

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

13

Spanos & Poolla

Carefully designed arrays of simulations can reproduce statistics of process

Time out! What do all these Techniques need?

Lecture 3: Parametric Yield Closeout

EE290H F03

15

Spanos & Poolla

An Example of Using TCAD in Process Characterization

Accurate Statistical Process Variation Analysis for 0.25- m CMOS with Advanced TCAD Methodology, Hisako Sato, Hisaaki Kunitomo, Katsumi Tsuneno, Kazutaka Mori, and Hiroo Masuda, Senior Member, IEEE, IEE TSM, Vol 11, No 4, November 1998

EE290H F03

EE290H F03

Spanos & Poolla

18

19

Spanos & Poolla

How about Statistical Process Simulation?

- Low level, physical <u>process parameters</u> can be used as *statistically independent disturbances*.
- Method
 - Identify process disturbances.
 - Infer multi-level statistics of process disturbances.
 - Use fats process and device simulation to generate device parameters.
 - Global and local variations can be represented.

Lecture 3: Parametric Yield Closeout

EE290H F03

Statistical Process Simulation

- Compact Process / Device Models.
 - Typically 1-D or compact 2-D models.
- The concept of process disturbances.
 - Low level process parameters that are, almost by definition, independent from each other.

EE290H F03

Spanos & Poolla

Possible to Model Statistics of Device Performance

For complex Analog Circuits...

• "Matching" matters.

• It is impossible to consider matching of individual devices

• It is practical to "group" devices, and consider matching <u>across</u> groups.

Lecture 3: Parametric Yield Closeout

23

Spanos & Poolla

EE290H F03

Why do we really loose Yield?

- Catastrophic defects due to contamination.
- "One time" departures from Statistical Control.

Problems with earlier Techniques

- Earlier Techniques assume:
- The entire fab line is "under SPC".
- Critical steps can be "characterized" via measurements.
- VLSI Technologies, however, are often too short-lived and too complex to achieve SPC status!

Lecture 3: Parametric Yield Closeout

EE290H F03

25

Spanos & Poolla

A Binning Prediction Problem

Create a model that relates yield to easy-to-measure, in-line and electrical parameters.

Base model on process physics - so that is is valid even when the process is out of SPC.

Lecture 3: Parametric Yield Closeout

The Binning Prediction (cont.)

- · Use this model in conjunction with measurements to predict functional yield (speed binning) early on.
- · This will give early feedback about the line and the product in it.
- Some of the costly performance testing might be avoided.

Lecture 3: Parametric Yield Closeout

Spanos & Poolla

EE290H F03

The Generic Process Model

Mean and Std. Dev. (σ) for NMOS Process Parameters

Parameter	Mean	Global σ	Local σ	Units
ΔL	0.30	0.10	0.025	microns
ΔW	0.15	0.05	0.0	microns
T _{or}	35.0	1.5	0.38	nm
N _{subs}	5.5 x 10 ¹⁵	1.67 x 10 ¹⁵	0.42 x 10 ¹⁵	cm ⁻³

NMOS/PMOS Global Parameter Correlations

Parameters	$N-\Delta L$	$N-\Delta W$	N-T _{ox}	N-N _{subs}
$P-\Delta L$	0.75	0.0	0.0	0.0
$P-\Delta W$	0.0	1.0	0.0	0.0
$P-T_{ox}$	0.0	0.0	1.0	0.0
P-N _{subs}	0.0	0.0	0.0	0.0

The Specific IC Product Model

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

Simulated Statistical Distribution of Performances

Lecture 3: Parametric Yield Closeout

Spanos & Poolla

EE290H F03

Yield Body Representation

 Using a linear model, each side of the yield body is a hyperplane of the form:

 $Performance = A_0 + A_1(N_{ld}) + A_2(N_{tox}) + \dots$

 The adequacy of the model can be examined by plotting the distance of good and bad parts from the hyperplanes:

$$d_p = AX_p$$

 Projecting constraints into two dimensional planes gives insight into how to improve the model.

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

31

Test Patterns

- We need to characterize both interconnect and active areas of the chip. Test patterns include:
 - Transistor arrays (three sizes of each type).
 - Capacitors for three typical oxide thicknesses.
 - Polysilicon structures for word line resistance.

Lecture 3: Parametric Yield Closeout

EE290H F03

In-Line and Electrical Measurements

- In order to use this model as a yield predictor, we have to "feed" to it easy to collect measurements.
- Standard test patterns are in use to collect Tox, Vt, kp, ΔL, ΔW, doping levels, poly resistivities.

33

Spanos & Poolla

Overall Binning Prediction Methodology

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

35

EE290H F03

Issues in IC Manufacturability

- Importance and Causes of Yield Loss
- A Formulation of the DFM Problem
- Circuit Design for Manufacturability
- Yield Modeling Methods
- CIM and DFM

Lecture 3: Parametric Yield Closeout

EE290H F03

37

Spanos & Poolla

Projected Parametric Variation in Future Nodes

Technology	180nm		130nm		10	Qnm	70nm		
Device	NMQS PMQS		NMOS	PMOS	NMOS	PMÖS	NMOS	PMÖŠ	
L _{eff} (nm)	$100 \mp 16.7\%$	$100 \mp 16.7\%$	$65 \mp 16.7\%$	$65 \mp 16.7\%$	$45 \mp 16.7\%$	$45 \mp 16.7\%$	$28 \mp 16.7\%$	$28 \mp 16.7\%$	
$T_{\alpha x}(A)$	$22 \mp 4\%$	$22 \mp 4\%$	$16 \mp 4\%$	$16 \mp 4\%$	$13 \mp 4\%$	$13 \mp 4\%$	$10 \mp 4\%$	$10 \mp 4\%$	
$R_{d,sw}(\Omega - \mu m)$	$250 \mp 10\%$	$450 \mp 10\%$	$200 \mp 10\%$	$400 \mp 10\%$	$180 \mp 10\%$	$300 \mp 10\%$	$150 \mp 10\%$	$280 \mp 10\%$	
X_{f} (nm)	1	30	24			20	13		
$V_{fh}(V)$	$0.214 \mp 30\%$	$-0.327 \mp 30\%$	$0.232 \mp 30\%$	$-0.273 \mp 30\%$	$0.217 \mp 30\%$	$-0.253 \mp 30\%$	$0.169 \mp 30\%$	$-0.218 \mp 30\%$	
Interconnect	Local	Global	Local	Global	Local	Global	Local	Global	
E	$3.5 \mp 3\%$		$3.2 \mp 5\%$		$2.8 \mp 5\%$		$2.2 \pm 5\%$		
w(nm)	$250 \mp 20\%$	$525 \mp 20\%$	$175 \pm 20\%$	$335 \mp 20\%$	$123 \pm 20\%$	$237 \pm 20\%$	$85 \mp 20\%$	$160 \mp 20\%$	
s(nm)	$250 \mp 20\%$	$525 \mp 20\%$	$175 \pm 20\%$	$335 \mp 20\%$	$123 \pm 20\%$	$237 \pm 20\%$	$85 \mp 20\%$	$160 \mp 20\%$	
t(nm)	$500 \mp 10\%$	$1050 \mp 10\%$	$280 \pm 10\%$	$670 \mp 10\%$	$197 \pm 10\%$	$498 \pm 10\%$	$145 \pm 10\%$	$325 \mp 15\%$	
h(nm)	$500 \mp 15\%$	$1050 \mp 15\%$	$280 \pm 15\%$	$670 \pm 15\%$	$197 \pm 15\%$	$498 \pm 15\%$	$145 \mp 15\%$	$325 \pm 15\%$	
ρ (Ω-m)	2.20-8	$\mp 30\%$	$2.2e{-}8 \mp 30\%$		$2.2e-8 \mp 30\%$		$2.2e-8 \mp 30\%$		
$\operatorname{Rvia}(\overline{\Omega})$	23 ∓	20%	$25 \mp 20\%$		$27 \mp 20\%$		$29 \mp 30\%$		
$Length(\mu m)$	62.5	5000	55.56	3333	50	2500	45.45	2000	
$Wn(\mu m)$	1.26	15	1.01	9.75	0.76	6.75	0.48	4.2	
Dynamic									
$V_{dd}(V)$	$1.8 \mp 10\%$		$1.2 \mp 10\%$		$1.0 \mp 10\%$		$0.9 \mp 10\%$		
Tr(ps)	160		125		110		87		
Temp (^{a}C)	25		25		25		25		

Projected Parametric Variation in Future Nodes Test Circuits used to facilitate Analysis

Lecture 3: Parametric Yield Closeout

39

EE290H F03

Spanos & Poolla

Projected Parametric Variation in Future Nodes

Projected Parametric Variation in Future Nodes

Lecture 3: Parametric Yield Closeout

41

EE290H F03

Spanos & Poolla

Projected Parametric Variation in Future Nodes

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

IC production suffers from routine and assignable variability.

- •Human errors, equipment failures
- •Processing instabilities
- Material non-uniformities
- Substrate inhomogeneites
- Lithography spots
- Variability causes deformations
- Geometrical
 Electrical
 - ° Lateral ° Global
 - ° Vertical ° Local
 - ° Spot defects

Deformations have *deterministic* and *random* components, are *global* and/or *local*, can be *independent* or can *interact*.

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

How does reduced variability help?

45

EE290H F03

Design Yield Prediction

First we define functional (timing and other functionality constraints) and parametric (speed, power etc.) measures:

$$\begin{aligned} Q_F &= \{q_1^F, q_2^F, ..., q_{h_F}^F\}^T \\ Q_P &= \{q_1^P, q_2^P, ..., q_{h_F}^P\}^T \end{aligned}$$

Then we define the space that contains both types of measures:

$$S_Q = S_Q^F \times S_Q^P$$

The set of acceptable IC performances is given as:

$$A_Q = \{Q \in S_Q | each q_j acceptable \forall j=1,2,..., n_Q\}$$
$$n_Q = n_F + n_P$$

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

47

Design Yield Prediction (cont.)

All performances are determined from the state variables of the process (geometric and electrical parameters after wafer fabrication):

$$A_W = \{X_W \in S_W | Q(X_W) \in A_Q\}$$

This is the acceptability region defined in the *state variable space*. The Yield is defined as:

$$Y = \int g(x_W) f_W(x_W) dx_W$$

$$f_W(x_W) \text{ is the } jpdf \text{ of } X_W \text{ and } g(x_W) = \begin{cases} 1, \forall x_W \in A_W \\ 0, \text{ otherwise} \end{cases}$$

$$Y = \int_{A_W} f_W(x_W) dx_W$$

Lecture 3: Parametric Yield Closeout

48

EE290H F03

Design Yield Prediction (cont.)

Let us now assume that X wreally depends on the parameter sets defined as C (Controls), L (Layout), and D(disturbances). Given fixed values for C and L, then:

$$Y = \int_{A_D(C^0, L^0)} f_D(\delta) \, d\delta$$

1

Let us further assume that *C*, *L*, *D* are *separable* (i.e. some affect performance and some functionality, but none affects both). Then:

$$Y'_{FUN} = \begin{cases} f_D'(\delta') d\delta' \\ A \overline{b}(C^0, L^0) \\ and \\ Y'_{PAR} = \begin{cases} f_D''(\delta'') d\delta'' \\ A \overline{b}(C^0, L^0) \end{cases}$$

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

49

Manufacturing Yield vs. Design Yield

$$Y_M = \frac{N_F}{N} = \frac{N_W N_F N_P}{N N_W N_F} = Y_W Y_{PT} Y_{FT}$$

Because of test coverage limitations:

 $Y_M \ge Y$

Because of imperfect separation:

$$Y \leq Y_{PAR}' \cdot Y_{FUN}'$$

Finally, since we do not probe the actual circuit, we have:

$$Y_{PRO} \approx Y_{PAR}$$

EE290H F03

Yield and Production Cost

The objective is not to maximize yield but to minimize cost. Wafer Cost: $C_1 = (N - N_W)(c_P^* + c_W)$

Probe Cost:
$$C_2 = (N_W - N_P)(C_{PT} + C_P + C_W)$$

Final Test Cost: $C_3 = N_P(c_{FT}+c_A+c_{PT}+c_P+c_W)$

Total Cost per chip sold: $C = C_1 + C_2 + C_3$

$$\frac{C}{N_F} = \frac{N_P}{N_F} (c_{FT} + c_A + c_{PT} + c_P + c_W) + \frac{N_W}{N_F} (1 - \frac{N_P}{N_W}) (c_{PT} + c_P + c_W) + \frac{N_W}{N_F} (1 - \frac{N_W}{N_F}) (c_P^* + c_W)$$

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

51

Yield and Production Cost (cont)

Finally, total cost per chip sold:

$$\frac{C}{N_F} = (c_{FT} + c_A + c_{PT} + c_P + c_W) + \frac{Y_P}{Y_M} (1 - Y_{FT}) (c_{FT} + c_A + c_{PT} + c_P + c_W) + \frac{Y_W}{Y_M} (1 - Y_{PT}) (c_{PT} + c_P + c_W) + \frac{1}{Y_M} (1 - Y_W) (c_P^* + c_W)$$

This means that the yield maximization problem and the cost minimization problem are not equivalent!

VLSI Design for Manufacturing: Yield Enhancement Director, Maly and Strojwas Kluwer Academic Publishers 1989

In Conclusion

- Yield is good and Variability is bad.
 - metrology
 - statistical process control
 - run-to-run and real-time control
- Must manipulate process steps to accommodate circuits and designs.
 - modeling
 - design of experiments
- Must keep cost of manufacturing low.
 - Automation of product flow
 - Automation of information management

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

53

Calculating IC Cost vs Defect Density

An example...

The 1997 Roadmap (see transistor cost)										
Year	1997	1999	2001	2003	2006	2009	2012			
Feature nm	250	180	150	130	100	70	50			
$\Delta reamm2$	300	340	385	/ 30	520	620	750			
Density cm ⁻²	3 7M	6 2M	10M	430 18M	39M	84M	180M			
Cost nc/tr	3000	1735	1000	580	255	110	50			
technology	248	248	193?	157?	14	14	14			
wafer size	200	300	300	300	300	450	450			
Function/milicent										
Overall Production Efficiency up by ~20X (!) from 1997 to 2012.										
Function/milicent										
	1997 ₁₉₉₉	2001 2003	2006 200	09 2012	unction/milice	nt				

EE290H F03

Spanos & Poolla

Negative Binomial (a widely accepted yield model)

If f(D) follows a Gamma distribution, then:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{1} + \frac{\mathbf{A} \mathbf{D}}{\alpha} \end{bmatrix}^{-\alpha} \qquad (\alpha \sim 0.3 - 3)$$

And if clustering becomes an issue, then:

$$Y = Y_o \left[1 + \frac{AD}{\alpha} \right]^{-\alpha}$$

where Yo is the "gross cluster yield".

EE290H F03

Spanos & Poolla

Lecture 3: Parametric Yield Closeout

EE290H F03

59

Spanos & Poolla

Logic Defect Density, 0.7-0.9µm CMOS

Lecture 3: Parametric Yield Closeout

61

EE290H F03

Spanos & Poolla

Logic Defect Density, 0.7-0.9µm CMOS

EE290H F03

Bringing the Puzzle Pieces together...

Year	D	CD	Area	GD/W	Killer Def	Wafer Size	Density	Yield	Cent/Die	10^-6c/Tr
1997	0.000600	0.250	300.000	88.096	0.000600	200.000	3.700	0.842	11351	3068
1999	0.000500	0.180	340.000	137.856	0.001340	300.000	6.200	0.663	10881	1755
2001	0.000140	0.150	385.000	145.052	0.000648	300.000	10.000	0.790	10341	1034
2003	0.000050	0.130	430.000	141.792	0.000356	300.000	18.000	0.863	10579	588
2006	0.000002	0.100	520.000	133.684	0.000031	300.000	39.000	0.984	11220	288
2009	0.000004	0.070	620.000	229.707	0.000182	450.000	84.000	0.896	9795	117
2012	0.000001	0.050	750.000	193.394	0.000125	450.000	180.000	0.912	11634	65
	-									

Note how clean we must be! Note trade-offs between wafer size and defects! 20x improvement will not be easy...

Lecture 3: Parametric Yield Closeout

EE290H F03

Spanos & Poolla

63

Fall 2003 EE290H Tentative Weekly Schedule

15. Presentations of project results.