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Design of Experiments

• Comparison of Treatments
– which recipe works the best?     

• Simple Factorial Experiments 
– to explore impact of few variables                  

• Fractional Factorial Experiments   
– to explore impact of many variables                 

• Regression Analysis
– to create analytical expressions that “model” process 

behavior
• Response Surface Methods

– to visualize process performance over a range of 
input parameter values 
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Design of Experiments

• Objectives:
– Compare Methods
– Deduce Dependence
– Create Models to Predict Effects

• Problems:
– Experimental Error
– Confusion of Correlation with Causation
– Complexity of the Effects we study
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Problems Solved

• Compare Recipes
– Choose the recipe that gives the best  results
– Organize experiments to facilitate the analysis
– Use experimental results to build process models
– Use models to optimize the process
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Comparison of Treatments

• Internal and External References
• The Importance of Independence
• Blocking and Randomization
• Analysis of Variance
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The BIG Question in  comparison of treatments:

• How does a process compare with other 
processes? 
– Is it the same? 
– Is it different? 
– How can we tell?
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Using an External Reference to make a Decision

• An external reference can be used to decide whether a new 
observation is different than a group of old observations.

• Example: Create a comparison procedure for lot yield 
monitoring. Do it without "statistics".

• Use “external reference data“ (historical data from the same 
process, but not from the same experiment):
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To compare the difference between the average of 
successive groups of ten lots, I build the histogram from 
the reference data:

Example: Using an External Reference

• Each new point can then be judged  on the basis of the 
reference data.

• The only assumption here is that the  reference data is 
relevant to my test!
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Using an Internal Reference...

• We could generate an "internal" reference distribution 
from the very data we are comparing.

• Sampling must be random, so that the data is 
independently distributed.

• Independence would allow us to use statistics such as 
the arithmetic average or the sum of squares.

• Internal references are based on Randomization.
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Randomization Example 

• Is recipe A different than recipe B?

Sample

A B
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Randomization Example - cont.

• There are many ways to decide this...
1. External reference distribution (based on old data.)
2. Assumed, approximate external reference distr. (such as 

student-t, normal, etc).
3. Internal reference distribution.
4. "Distribution free" tests.

• Options 2, 3 and 4 depend on the assumption that 
the samples are independently  distributed.
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Randomization Example - cont.

• If there was no difference between A and B, then let me 
assume that I just have one out of the 10!/5!5! (252) 
possible arrangements of labels A and B. 

• I use the data to calculate the differences in means for 
all the combinations:
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t0 = 
(yB -yA) - (µA - µB)

s 1
nA

+ 1
nB

The student-t distribution was, in fact, defined to 
approximate such randomized distributions, when the 
“parent” distribution is normal!

The Origin of the student-t Distribution

• For the etch example, t0 = 0.44 and Pr (t > t0) = 0.34
• Randomized Distribution = 0.33
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Example in Blocking

• Compare recipes A and B on five machines. 
• If there are inherent differences from one machine to the 

other, what scheme would you use? 
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d - δ
sd/ n

 ~ tn-1

d = 
±d1±d2±d3±d4±d5

5

In general, randomize what you don't know
and block what you do know.
In general, randomize what you don't know
and block what you do know.

Example in Blocking - cont.

• With the blocked scheme, we could calculate the A-B 
difference for each machine. 

• The machine-to-machine average of these differences 
could be randomized.
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Your Question: Are the four treatments the same or not?Your Question: Are the four treatments the same or not?

Analysis of Variance 

The Statistician's Question: Are the discrepancies between
the groups greater than the variation within each group?

The Statistician's Question: Are the discrepancies between
the groups greater than the variation within each group?
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i=1 i=2 i=3 i=4 i=5 Avg s t
2 ν t

1: 650 648 632 645 641 643.20 202.80 4 25.00
2: 645 650 638 643 640 643.20 86.80 4 25.00
3: 623 628 630 620 618 623.80 104.80 4 207.36
4: 645 640 648 642 638 642.60 63.20 4 19.36

sR
2  =

sT
2 = 

sT
2

sR
2 =

(yt - y)2

Calculations for our Example
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St = (ytj - yt)2Σ
j=1

nt

st
2 = St

nt - 1

sR
2 = ν1s1

2+ν2s2
2+...+ νksk

2

ν1 + ν2 +...+ νk
= SR

N - k
= SR

νR

First, lets assume that all groups have the same spread. 
Lets also assume that each group is normally distributed. 
The following is used to estimate their common σ:

Variation Within Treatment Groups

• This is an estimate of the unknown, within group s -
square. 

• It is called the within treatment mean square
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sT
2 = 

nt(yt - y)2Σ
t=1

k

k - 1
=  ST

νT

If all the treatments are the same, then the within and 
between treatment mean squares are estimating the same 
number!

If all the treatments are the same, then the within and 
between treatment mean squares are estimating the same 
number!

This is the between treatment mean square

Variation Between Treatment Groups

• Let us now form Ho by assuming that all the groups have 
the same mean.

• Assuming that there are no real differences between 
groups, a second estimate of sT

2 would be:
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sT
2 estimates   σ2 + nt τt

2Σ
t = 1

k
/ (k - 1)

where   τt ≡ µt - µ

If the treatments are different then:

What if the Treatments are different?

In other words, the  between treatment mean square is inflated
by a factor proportional to the spread among the treatments!
In other words, the  between treatment mean square is inflated
by a factor proportional to the spread among the treatments!
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sT
2

sR
2    is significantly greater than 1.0      

This can be formalized since:
sT

2

sR
2    ~   Fk-1, N-k    

Therefore, the hypothesis of equivalence is rejected if:

Final Test for Treatment Significance
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SD = (ytj - y)2Σ
j=1

nt

Σ
t=1

k
sD

2 = SD
N - 1

= SD
νD

Obviously (actually, this is not so obvious, but it can be proven):

SD = ST + SR    and  νD = νT + νR

A measure of the overall variation:

More Sums of Squares
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Source       Sum        DFs Mean sq 
of Var of sq

between     ST vT (k-1)         sT

within         SR                    vR (N-k)        sR

total            SD vD (N-1)        sD

2

2

2

ANOVA Table 
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Source       Sum        DFs Mean sq 
of Var of sq

average      SA vA ( 1 )          sA

between     ST vT (k-1)         sT

within         SR                    vR (N-k)        sR

2

2

2

total            S          v ( N )       

ANOVA Table  (full)
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Data File:

Source
Sum of

Squares
Deg. of

Freedom
Mean

Squares F-Ratio Prob>F

CompEtch

Between
Recipe

Error

Total

1.3836e+3

4.5760e+2

3

16

4.6120e+2

2.8600e+1

1.6126e+1

1.8412e+3 19

4.29e-5

Anova for our example...
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Y = A + T + R

In Vector Form:

yti y           yt - y           yti - yt

.

.

.

.

.

.

.

.

.

.

.

.

=          +                +

N 1           k-1              N-k

Decomposition of Observations

The term degrees of freedom refers to the dimensionality 
of the space each vector is free to move into.
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Y = A + D
Easy to prove that A ⊥ D.

D = R +T
Easy to prove that R ⊥ T and A ⊥ R.

Y

A T

Y
D R

Geometric Interpretation of ANOVA
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So, the "sufficient statistics" are: sR
2 ,   y1, y2,..., yk

yti = µt + eti         eti ~ N (0, σ2)

σ2,   µ1, µ2,..., µkas estimators of:

sR
2

ytFor our example:

According to this model, the residuals are IIND. 

How do you verify that?

According to this model, the residuals are IIND. 

How do you verify that?

ANOVA “Model” and Diagnostics

A: 643.20
B: 643.20
C: 623.80

D: 642.60

28.6
This “model” describes the 
data “sufficiently”.
Its values are the sufficient 
statistics of the dataset.
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Are these recipes significantly different?

Analysis of Variance

Source
Model
Error
C Total

DF
5

227
232

Sum of Squares
26969.525
58418.758
85388.283

Mean Square
5393.91
257.35

F Ratio
20.9593
Prob > F

0.0000

t
h
i
c
k
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100
110
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150
160
170
180
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200

E B C D A       F
Recipe

ANOVA Example: Poly Deposition
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Residual Plots:
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Residual Plots (cont):



Lecture 5: Comparison of Treatments and ANOVA

Spanos & PoollaEE290H F03

33

ANOVA Summary

• Plot Originals
• Construct ANOVA table
• Are the treatment effects significant?
• Plot residuals versus:

– treatment
– group mean
– time sequence
– other?

• ANOVA is the basic tool behind most empirical 
modeling techniques.


