Two-Level Factorials

Treatments and Blocks Two-Way Analysis of Variance - MANOVA The Importance of Transformation Two-Level Factorials

Lecture 6: 2-level Factorials

EE290H F03

Spanos & Poolla

1

What is a factorial?

- So far, we analyzed data based on the type of treatment they received.
- This analysis is known as "one-way" analysis of variance.
- Now we discuss data that can be classified in more than one "ways". Each of these ways is known as a "factor".
- In the beginning we will call the first classification a "treatment" and the second classification a "block".

Randomized Block Designs

• In general we "block" the effect that we want to eliminate so that we can see the effects of the "treatment".

EE290H F03

Spanos & Poolla

3

Example: Particle Contamination Study

- We have two LPCVD tubes and three gas suppliers. We are interested in finding out if the choice of the gas supplier makes any difference in terms of average particle counts on the wafers.
- Experiment: we run three full loads on each tube, one for each gas. We report the average particle adders for each load (excluding the first wafer in the boat...)

Spanos & Poolla

A Simple Two-Way ANOVA for particles...

EE290H F03

Spanos & Poolla

5

The Two-Way ANOVA

Decompose particle counts to global average, deviations from that average due to machine choice and gas source choice. What remains is the **residual**.

$$y_{ti} = \mu + \beta_i + \tau_t + \varepsilon_{ti} \text{ moments}$$
$$y_{ti} = \overline{y} + (\overline{y}_i - \overline{y}) + (\overline{y}_t - \overline{y}) + (y_{ti} - \overline{y}_t - \overline{y}_i + \overline{y}) \text{ estimates}$$

Two-Way ANOVA Table

	Source of Variance	Sum of sq	DFs	Mean sq
	Average bet. blocks bet. treatm residuals	S _A S _B S _T S _R	1 n-1 k-1 (n-1)(k-1)	s _B ² s _T ² s _R ²
	total	S	nk	
Expec	ted values:	S ² _B : S ² ⊤ :	$\sigma^2 + k \Sigma$ $\sigma^2 + n \Sigma$	$\begin{array}{l} \beta^{2_{i}} \ / \ (\text{n-1}) \\ \tau^{2_{t}} \ / \ (\text{k-1}) \end{array}$
Assun	nptions:	- additi - IIND (vity of residuals	5

Lecture 6: 2-level Factorials

EE290H F03

Spanos & Poolla

7

MANOVA for our Example

<u>Analysis o</u>	f Varia	nce		
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	3	1350.0000	450.000	32.1429
Error	2	28.0000	14.000	Prob > F
C Total	5	1378.0000		0.0303

Effect T	est				
Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
Block	1	1	150.0000	10.7143	0.0820
Treatmen	nt 2	2	1200.0000	42.8571	0.0228

The Model of the two-way ANOVA

 $y_{ti} = \mu + \beta_i + \tau_t + \varepsilon_{ti}$ $\hat{y}_{ti} = \mu + \beta_i + \tau_t$

This model assumes additivity as well as IIND residuals:

Geometric Interpretation of the two-way ANOVA

D = Y - A

 $\mathbf{D} = \mathbf{B} + \mathbf{T} + \mathbf{R}$

Easy to prove that $\mathbf{R} \perp \mathbf{T}$ and $\mathbf{A} \perp \mathbf{R}$.

A Two-Way Factorial Design

- When both effects are of interest, then the same arrangement is called a factorial design.
- The only addition to our model is the interaction term.

Lecture 6: 2-level Factorials

EE290H F03

Spanos & Poolla

11

ANOVA Table for Two-Way Factorials

	Source of Var	Sum of sq	DI	-s	Mean sq	
	bet. bake bet. etch interaction residuals	S _B S⊤ S _I S _e	r k (n-1 nk(n-1 ⊱1 I)(k-1) m-1)	s _B ² s _T ² s _Γ ² s _E ²	-
_	total	S	nkı	m-1		
E	xpected va	lues:	s _B ² :	σ ² +	mk Σ β^{2_i} /	(n-1)
			$\mathrm{s_T}^2$:	σ ² +	mn $\Sigma \; \tau^{2_t}$ /	(k-1)
			s _l ² :	σ ² +	$m\Sigma\Sigma\;\omega^{2}{}_{\rm ti}/$	(n-1)(k-1

Assumptions: residuals IIND

)

Factorial for our Example

Effect Test					
Source	Nparm	DF	Sum of Squares	F-Ratio	Prob > F
Block	1	1	150.0000	•	•
Treatment	2	2	1200.0000	•	•
Block *Treatmen	2	2	28.0000	•	•

Analysis of	Variance	2		
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	5	1378.0000	275.600	•
Error	0	0.0000	•	Prob > F
C Total	5	1378.0000		•

What are your conclusions?

Lecture 6: 2-level Factorials

EE290H F03

EE290H F03

Spanos & Poolla

13

Two way factorial experiment for DLeff.

Etch Rec	Bake	DLeff	Etch Rec	Bake	DLeff
1	1	0.31	1	2	0.40
2	1	0.82	2	2	0.49
3	1	0.43	3	2	0.31
4	1	0.45	4	2	0.71
1	1	0.45	1	2	0.23
2	1	1.10	2	2	1.24
3	1	0.45	3	2	0.40
4	1	0.71	4	2	0.38
1	1	0.46	1	3	0.22
2	1	0.88	2	3	0.30
3	1	0.63	3	3	0.23
4	1	0.66	4	3	0.30
1	1	0.43	1	3	0.21
2	1	0.72	2	3	0.37
3	1	0.76	3	3	0.25
4	1	0.62	4	3	0.36
1	2	0.36	1	3	0.18
2	2	0.92	2	3	0.38
3	2	0.44	3	3	0.24
4	2	0.56	4	3	0.31
1	2	0.29	1	3	0.23
2	2	0.61	2	3	0.29
3	2	0.35	3	3	0.22
4	2	1.02	4	3	0.33
2 3 4 1 2 3 4 1 2 3 4	1 1 2 2 2 2 2 2 2 2 2 2 2 2	0.72 0.76 0.62 0.36 0.92 0.44 0.56 0.29 0.61 0.35 1.02	2 3 4 1 2 3 4 1 2 3 4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.37 0.25 0.36 0.18 0.38 0.24 0.31 0.23 0.29 0.22 0.33

Anova Table for 2-way DLeff Factorial

Effect Test					
Source	Nparm	DF St	um of Squares	F Ratio	Prob>F
Etch Recipe	3	3	0.9212063	13.8056	0.0000
Bake Proc	2	2	1.0330125	23.2217	0.0000
Etch Rec*Bake Pro	6	6	0.2501375	1.8743	0.1123

Analysis of Var	riance		
SourceDModel1Error3C Total4	F Sum of Squares 1 2.2043563 6 0.8007250 7 3.0050813	Mean Square 0.200396 0.022242	F Ratio 9.0097 Prob>F 0.0000

Lecture 6: 2-level Factorials

EE290H F03

Diagnostics for DLeff

÷ :

С

i

в

Lecture 6: 2-level Factorials

15

Spanos & Poolla

Residual Statistics for DLeff

Lecture 6: 2-level Factorials

EE290H F03

17

Spanos & Poolla

Need for Transformation

Variance Stabilization

If the variance is a function of μ , then the appropriate transformation is needed to correct it. In general:

$$\sigma_y \operatorname{prop} \mu^{\alpha}$$
$$Y = y^{\lambda}$$
$$\lambda = 1 - \alpha$$

where σ can be determined empirically.

Non-additivity

An empirically selected transformation can be tested using a formal Anova-based test.

Anova Table for 2-way In(DLeff) Factorial

Effect Test					
Source	Nparm	DF	Sum of Squares	F Ratio	Prob>F
Etch Recipe	3	3	3.5571735	21.9295	0.0000
Bake Proc	2	2	5.2374726	48.4324	0.0000
Etch Rec*Bake Pro	6	6	0.3957467	1.2199	0.3189

Analysis c	of Varian	<u>ce</u>		
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	11	9.190393	0.835490	15.4520
Error	36	1.946516	0.054070	Prob>F
C Total	47	11.136909		0.0000

Lecture 6: 2-level Factorials

EE290H F03

Diagnostics for In(DLeff)

Lecture 6: 2-level Factorials

19

Spanos & Poolla

ł

-

3.0

2.5

20

Residual Statistics for In(DLeff)

EE290H F03

Improvement due to Transformation

Spanos & Poolla

Lecture 6: 2-level Factorials

Other Blocked Arrangements

- Sometimes we might have to deal with more than one blocking variables.
- Example: testing the effect of a develop recipe on wafers and resists that come from different vendors.
- Attach two types of labels, A,B.. and I, II... and combine them to balance the blocking effects:

blocks -	—ı		c	column	s		
DIOCKS		1	2	3	4	5	<- treatments
	Ι	A	В	C	D	E	
	П	С	D	E	A	В	
rows	Ш	E	A	B	C	D	
	IV	В	С	D	E	A	*
	v	D	E	A	В	С	

Lecture 6: 2-level Factorials

EE290H F03

23

Spanos & Poolla

Measuring the Effect of Variables

5 x 5 Latin Square design.

- The first step is always to find whether any variable has an effect on the outcome.
- Nothing more can be done for qualitative (categorical) variables such as recipe type, vendor name etc.

$$\widehat{\mathbf{y}}_{ti} = \mu + \tau_t + \beta_i + \omega_{ti}$$

- Some times we deal with quantitative variables (temperature, pressure).
- Once the effect has been confirmed, the next step is to build empirical quantitative models of the process:

$$\mathbf{y} = \mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

Lecture 6: 2-level Factorials

Quantitative Models of the Process

they can be used to visualize, control, design, diagnose etc.

How can such a model be "extracted" from the process?

25

A Simple 2-Factor 2-Level Factorial

Lecture 6: 2-level Factorials

EE290H F03

Calculations for the 2 Factor Factorial

- Average response
- Effect for x₁
- Effect for x₂
- Interaction of x₁ and x₂
- Model

27

Spanos & Poolla

Spanos & Poolla

General Factorial Designs at Two Levels

Note on Economy in experimentation:

Factorial vs the "one-factor-at-a-time" experiment

How many runs do we need for the same precision?

Spanos & Poolla

31

Spanos & Poolla

Calculation of Main Effects and Interactions

Lecture 6: 2-level Factorials

Two Level Factorial for Polysilicon Deposition

Lecture 6: 2-level Factorials

EE290H F03

Spanos & Poolla

33

Variance Estimation via replicated runs:

$$s^{2} = \frac{v_{1}s_{1}^{2} + v_{2}s_{2}^{2} + \dots + v_{g}s_{g}^{2}}{v_{1} + v_{2} + \dots + v_{g}}$$

$$V(effect) = V (\overline{y}_{+} - \overline{y}_{-}) = (\frac{1}{4} + \frac{1}{4})\sigma^{2} = \frac{1}{2}\sigma^{2}$$

in general:
$$V(effect) = \frac{4}{N}\sigma^{2}$$

Via insignificant high order effects:

High order effects can be seen as samples from one distribution:

N (0,
$$\frac{4}{N}\sigma^2$$
)

Sum of squares can be used to estimate σ^2 Example from previous page:

 σ_{effect} (estimate from insignificant effects) = 8.65 (3)

Normal Probability Plots

Used to identify insignificant effects.

Lecture 6: 2-level Factorials

```
EE290H F03
```

Spanos & Poolla

35

Normal Probability Plot - Example

Spanos & Poolla

Normal Probability Plot - 2⁵ Factorial Example

average $= 6$	55.5	
1 =	- 1.375	123 = 1.50
2 =	19.5	124 = 1.375
3 =	- 0.625	125 = -1.875
4 =	10.75	134 = -0.75
5 =	- 6.25	135 = -2.50
		145 = 0.625
12 =	1.375	235 = 0.125
13 =	0.75	234 = 1.125
14 =	0.875	245 = -0.250
15 =	0.125	345 = 0.125
23 =	0.875	
24 =	13.25	1234 = 0.0
25 =	2.0	1245 = 0.625
34 =	2.125	2345 = -0.625
35 =	0.875	1235 = 1.5
45 =		1345 = 1.0
		12345 = -0.25

Lecture 6: 2-level Factorials

EE290H F03

Spanos & Poolla

37

Normal Probability Plot - 2⁵ Factorial Example

Polysilicon Deposition Example (cont.)

Lecture 6: 2-level Factorials

EE290H F03

Spanos & Poolla

39

Using a Transformation to improve the model

<u>P</u>	T	F	InR	Effect	S
-	-	-	4.55	AVG	5.15
+	-	-	4.71	P	0.24
-	+	-	5.37	T	0.90
+	+	-	5.54	F	0.21
-	-	+	4.54	PT	-0.06
+	-	+	4.98	PF	0.07
-	+	+	5.66	TF	0.08
+	÷	+	5.83	PTF	-0.08

In of Deposition Rate R in In(Å/min)

σ_{ex}	periment (estimated from replications) =	= .028 (8)
σ_{m}	ean (estimated from replications) =	= .010
σ_{ef}	(estimated from replications) =	= .020
_ 01		070 (4)

 σ_{effect} (estimated from insignificant effects) = .073 (4)

Μ	ean P	Т	F	ΡΤ	PF	TF	PTF	Ava.
+	-	-	-	+	+	+	-	4.55
+	+	-	-	-	-	+	+	4.71
+	-	+	-	-	+	-	+	5.37
+	+	+	-	+	-	-	-	5.54
+	-	-	+	+	-	-	+	4.54
+	+	-	+	-	+	-	-	4.98
+	-	+	+	-	-	+	-	5.66
+	+	+	+	+	+	+	+	<u>5.83</u>
8	4	4	4	4	4	4	4	

Quick Calculation of Effects - Contrasts

Lecture 6: 2-level Factorials

EE290H F03

41

Spanos & Poolla

Quick Calculation of Effects - Yate's

	РТ	F	Ava.	(1)	(2)	(3)	d	est	eff
1		-	4.55	9. 26	20.17	41.18	8	5.15	AVG
2	+ -	-	4.71	10.91	21.01	0.94	4	0.24	Ρ
3	- +	-	5.37	9.52	0.33	3.62	4	0.90	Т
4	+ +	-	5.54	11.49	0.61	-0.26	4	-0.06	PT
5		+	4.54	0.16	1.65	0.84	4	0.26	F
6	+ -	+	4.98	0.17	1.97	0.28	4	0.07	PF
7	- +	+	5.66	0.44	0.01	0.32	4	0.08	TF
8	+ +	+	5.83	0.17	-0.27	-0.28	4	-0.08	PTF

Effects, interactions and residuals must be checked...

EE290H F03

Conclusions

• From One way ANOVA to MANOVA.

- From "table" models to continuous models.
- The most important concepts are:
 - There is a "true" model (with unknown "moments")
 - There is an "estimated" model.
 - Each estimated model parameter is a "statistic".
 - Critical underlying assumptions must be checked.
 - Residuals must be Independently, Identically, Normally Distributed (IIND).

(See chapter 7 and chapter 10 in BHH)

Spanos & Poolla