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Treatments and Blocks
Two-Way Analysis of Variance - MANOVA
The Importance of Transformation
Two-Level Factorials

Two-Level Factorials
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What is a factorial?

• So far, we analyzed data based on the type of treatment 
they received.

• This analysis is known as "one-way" analysis of 
variance.

• Now we discuss data that can be classified in more than 
one "ways". Each of these ways is known as a "factor".

• In the beginning we will call the first classification a 
"treatment" and the second classification a "block".



Lecture 6: 2-level Factorials

Spanos & PoollaEE290H F03

3

  y ti  = µ  +   β i     +     τ t    +           ε ti             
y ti  = y + (y i - y ) + (y t - y) + (y ti  - y t - y i + y)

Randomized Block Designs

• In general we "block" the effect that we want to eliminate 
so that we can see the effects of the "treatment".
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tube 1

tube 2

Gas A Gas B Gas C

Example: Particle Contamination Study

• We have two LPCVD tubes and three gas suppliers. We 
are interested in finding out if the choice of the gas 
supplier makes any difference in terms of average 
particle counts on the wafers.

• Experiment: we run three full loads on each tube, one for 
each gas. We report the average particle adders for 
each load (excluding the first wafer in the boat…)
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A B C

1 7 36 2 15

2 13 44 18 25

10 40 10 20

Treatment (Gas)

Block (Tube)

Decompose according to the equation:
  yti  = µ +   β i     +     τt    +           εti             

yti  = y + (y i - y) + (yt - y) + (yti  - yt - y i + y)

A Simple Two-Way ANOVA for particles...

7 36     2 20  20  20 -5 -5 -5 -10 20  -10                 2   1   -3

13 44    18            20  20  20 5   5  5 -10 20  -10                -2  -1    3

S = SA + SB +             ST +           SR

3,778     =

6          =

Sum Sq

DFs
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yti = µ + βi + τt + εti

yti = y + (y i - y) + (yt - y) + (y ti - yt - y i + y)

Decompose particle counts to global average, deviations
from that average due to machine choice and gas source 
choice. What remains is the residual.

The Two-Way ANOVA

moments

estimates
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Source of    Sum        DFs Mean sq 
Variance     of sq

Average      SA 1
bet. blocks  SB n-1             sB

2

bet. treatm ST k-1             sT
2

residuals     S R (n-1)(k-1)      sR
2

total            S             nk

Assumptions:         - additivity
- IIND of residuals

Expected values: s2B :     σ2 + k Σ β2i / (n-1)
s2T : σ2 + n Σ τ2t / (k-1)

Two-Way ANOVA Table
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Analysis of Variance

Source
Model

Error

C Total

DF
3

2

5

Sum of Squares
1350.0000

28.0000

1378.0000

Mean Square
450.000

14.000

F Ratio
32.1429

Prob > F
0.0303

Effect Test

Source
Block 
Treatment

Nparm
1
2

DF
1
2

Sum of Squares
150.0000

1200.0000

F Ratio
10.7143
42.8571

Prob > F
0.0820
0.0228

MANOVA for our Example
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This model assumes additivity as well as IIND residuals:

yti = µ + βi +τt + εti

yti = µ + βi + τt

Note that this model 
“predicts” 20 values 
using 4+5+1=10 parameters.

The Model of the two-way ANOVA
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D = Y - A

D = B + T + R

Easy to prove that R ⊥ T and A ⊥ R.

D

B T

R

Geometric Interpretation of the two-way 
ANOVA
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ytij = µti + ε tij

ytij = y ti + (ytij - y ti)

µti = µ + τt + βi + ωti

yti = y + (y t - y ) + (y i - y ) + (yti - y t - y i + y)

A Two-Way Factorial Design

• When both effects are of interest, then the same 
arrangement is called a factorial design.

• The only addition to our model is the interaction  
term.

moments

estimates
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Source       Sum        DFs Mean sq 
of Var of sq

bet. bake    SB n-1             sB
2

bet. etch     S T k-1             sT
2

interaction  SI (n-1)(k-1)       s I
2

residuals    Se nk(m-1)         sE
2

total            S          nkm-1  

Assumptions:  residuals IIND

Expected values: sB
2 : σ2 + mk Σ β2

i / (n-1)
sT

2 : σ2 + mn Σ τ2
t / (k-1)

sI
2 : σ2 + mΣΣ ω2

ti / (n-1)(k-1)

ANOVA Table for Two-Way Factorials  
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What are your conclusions?

Effect Test

Source
Block 

Treatment

Block *Treatmen

Nparm
1

2

2

DF
1

2

2

Sum of Squares
150.0000

1200.0000

28.0000

F-Ratio
•

•

•

Prob > F
•

•

•

Analysis of Variance

Source
Model
Error
C Total

DF
5
0
5

Sum of Squares
1378.0000

0.0000
1378.0000

Mean Square
275.600

•

F Ratio
•

Prob > F
•

Factorial for our Example
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Etch Rec Bake    DLeff
1 1 0.31
2 1 0.82
3 1 0.43
4 1 0.45
1 1 0.45
2 1 1.10
3 1 0.45
4 1 0.71
1 1 0.46
2 1 0.88
3 1 0.63
4 1 0.66
1 1 0.43
2 1 0.72
3 1 0.76
4 1 0.62
1 2 0.36
2 2 0.92
3 2 0.44
4 2 0.56
1 2 0.29
2 2 0.61
3 2 0.35
4 2 1.02

Etch Rec Bake     DLeff
1 2 0.40
2 2 0.49
3 2 0.31
4 2 0.71
1 2 0.23
2 2 1.24
3 2 0.40
4 2 0.38
1 3 0.22
2 3 0.30
3 3 0.23
4 3 0.30
1 3 0.21
2 3 0.37
3 3 0.25
4 3 0.36
1 3 0.18
2 3 0.38
3 3 0.24
4 3 0.31
1 3 0.23
2 3 0.29
3 3 0.22
4 3 0.33

Two way factorial experiment for DLeff.
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Effect Test
Source
Etch Recipe
Bake Proc
Etch Rec*Bake Pro

Nparm
3
2
6

DF
3
2
6

Sum of Squares
0.9212063
1.0330125
0.2501375

F Ratio
13.8056
23.2217

1.8743

Prob>F
0.0000
0.0000
0.1123

Analysis of Variance
Source
Model
Error
C Total

DF
11
36
47

Sum of Squares
2.2043563
0.8007250
3.0050813

Mean Square
0.200396
0.022242

F Ratio
9.0097

Prob>F
0.0000

Anova Table for 2-way DLeff Factorial
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0.8
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Predicted DLeff
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-0.4
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0

0.2

0.4

0.6

0.8

Bake Proc
A B C

Diagnostics for DLeff
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-3

-2

-1

0

1

2

3

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Residual Statistics for DLeff

MaxMin 75%50%25%

Est Mean and its 95% conf. interval

Normal Probability Plot (must be a straight line)
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σy prop µα

Y = yλ

λ = 1 - α

Variance Stabilization

If the variance is a function of µ, then the appropriate  
transformation is needed to correct it. In general:

Need for Transformation

where σ can be determined empirically.
Non-additivity
An empirically selected transformation can be tested using 
a formal Anova-based test.
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Effect Test
Source
Etch Recipe
Bake Proc
Etch Rec*Bake Pro

Nparm
3
2
6

DF
3
2
6

Sum of Squares
3.5571735
5.2374726
0.3957467

F Ratio
21.9295
48.4324
1.2199

Prob>F
0.0000
0.0000
0.3189

Analysis of Variance

Source
Model
Error
C Total

DF
11
36
47

Sum of Squares
9.190393
1.946516

11.136909

Mean Square
0.835490
0.054070

F Ratio
15.4520
Prob>F
0.0000

Anova Table for 2-way ln(DLeff) Factorial
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-0.6

-0.5
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-1.5 -1.0 -0.5 0.0

lnDLeff Predicted

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

1.0 1.5 2.0 2.5 3.0

Bake Proc

Residual ln(DLeff) Residual ln(DLeff)

Diagnostics for ln(DLeff)



Lecture 6: 2-level Factorials

Spanos & PoollaEE290H F03

21

-3

-2

-1

0

1

2

3

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

Residual Statistics for ln(DLeff)
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1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DLeffPredicted

l
n
D
L
e
f
f

DLeff

-1.5

-1.0

-0.5

0.0

-1.5 -1.0 -0.5 0.0
lnDLeffPredicted

ln(DLeff)

Improvement due to Transformation
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5 x 5 Latin Square design. 

<- treatments
blocks

Other Blocked Arrangements
• Sometimes we might have to deal with more than one 

blocking variables.
• Example: testing the effect of a develop recipe on wafers 

and resists that come from different vendors.
• Attach two types of labels, A,B.. and I, II... and combine 

them to balance the blocking effects:
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y ti  = µ + τ t + β i + ω ti

y = f(x1,x2...,xn)

Measuring the Effect of Variables

• The first step is always to find whether any variable has 
an effect on the outcome.

• Nothing more can be done for qualitative (categorical) 
variables such as recipe type, vendor name etc. 

• Some times we deal with quantitative  variables 
(temperature, pressure).

• Once the effect has been confirmed, the next step is to 
build empirical quantitative models of the process: 
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they can be used to visualize, control, design, diagnose etc.

How can such a model be "extracted" from the process?

Quantitative Models of the Process
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x

y

x1 x2

level (-1) level (+1)

y1

y2

Estimated model:
y = Avgy +1/2 Effectx x'

Estimated model:
y = Avgy +1/2 Effectx x'^

“True” model y = η + 1/2 Ε x’

Effectx =  y2 - y1

y = (y2 + y1) / 2

x' = 2 (x - Avgx) / ( x2 - x1 )
Avgx = (x2 + x1) / 2

A Simple 1-Factor, 2-Level Factorial
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(4)

(1) (2)

(3)

x1

x2

A Simple 2-Factor 2-Level Factorial

y

2y

3y
4y

1y
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Calculations for the 2 Factor Factorial

• Average response
• Effect for x1

• Effect for x2

• Interaction of x1 and x2

• Model
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Note on Economy in experimentation:

(1) (2)

(3) (4)

(5) (6)

(7) (8)

Simple, few runs, can be augmented.
2k

l1 × l2 ×  ...lk

General Factorial Designs at Two Levels
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(1) (2)

(3) (4)

x1

x2

(1)

(2)

(3)

(4)

x1

x2

(5)

How many runs do we need 
for the same precision?

Factorial vs the "one-factor-at-a-time" experiment
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23 Pilot Plant Example
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Calculation of Main Effects and Interactions
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o
Pressure        (P) 300-550 mtorr
Temperature   (T) 605-650 C
Silane flow      (F) 100-250 sccm
Dep. Rate R in Å/min
P   T   F        R                          Effects
- - -
+   - -
- +   -
+   +   -
- - +
+   - +
- +   +
+   +   +

94.80
110.96
214.12
255.82
94.14

145.92
286.71
340.52

192.87
40.86

162.83
47.90

6.89
11.93
30.75
-5.88

AVG
P
T
F
PT
PF
TF
PTF

σ experiment (estimate from replicates) = 9.05 (8) 
σ mean (estimate from replicates) =  3.20
σ effect (estimate from replicates) =  6.40

Two Level Factorial for Polysilicon Deposition 
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s2 = 
ν1s1

2+ν2s2
2+...+ νgsg2

ν1 + ν2 +...+ νg
 

N ( 0,  4
N

σ2 )

Sum of squares can be used to estimate σ2

Example from previous page:
σ effect (estimate from insignificant effects)   = 8.65 (3)

V(effect) = V ( y+ - y-) = ( 1
4

 + 1
4

)σ2 = 1
2

σ2

in general:
V(effect) = 4

N
σ2

Variance Estimation via replicated runs:

Via insignificant high order effects:
High order effects can be seen as samples from one 
distribution:
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Pi = 100(i - 1
2

)/m        i = 1,2, ..., m

Used to identify insignificant effects.

Normal Probability Plots
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0.0 2.0 4.0 6.0 8.0 10

.01
.1

1

5
10
20
30
50
70
80
90
95

99

99.9
99.99

Normal Probability Plot - Example
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Normal Probability Plot - 25 Factorial Example
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Normal Probability Plot - 25 Factorial Example
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y =  192.9+20.4P'+81.4T'+23.9F'+15.4T'F'^

86420
-100

0

100

200

1086420
-20

-10

0

10

20

30

Polysilicon Deposition Example (cont.)
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ln of Deposition Rate R in ln(Å/min)

P   T   F      lnR Effects
- - -
+   - -
- +   -
+   +   -
- - +
+   - +
- +   +
+   +   +

5.15
0.24
0.90
0.21
-0.06
0.07
0.08
-0.08

AVG
P
T
F
PT
PF
TF
PTF

σ experiment (estimated from replications) = .028 (8) 
σ mean           (estimated from replications) = .010
σ effect (estimated from replications) = .020
σ effect (estimated from insignificant effects) = .073 (4)

4.55
4.71
5.37
5.54
4.54
4.98
5.66
5.83

Using a Transformation to improve the model
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Mean
+
+
+
+
+
+
+
+

8

PT
+
-
-
+
+
-
-
+

4

PF
+
-
+
-
-
+
-
+

4

TF
+
+
-
-
-
-
+
+

4

PTF
-
+
+
-
+
-
-
+

4

Avg.
4.55
4.71
5.37
5.54
4.54
4.98
5.66
5.83

T
-
-
+
+
-
-
+
+

4

P
-
+
-
+
-
+
-
+

4

F
-
-
-
-
+
+
+
+

4

Quick Calculation of Effects - Contrasts
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1
2
3
4
5
6
7
8

Avg.
4.55
4.71
5.37
5.54
4.54
4.98
5.66
5.83

(1)
9.26

10.91
9.52

11.49
0.16
0.17
0.44
0.17

(2)
20.17
21.01
0.33
0.61
1.65
1.97
0.01

-0.27

(3)
41.18
0.94
3.62

-0.26
0.84
0.28
0.32
-0.28

d
8
4
4
4
4
4
4
4

est 
5.15
0.24
0.90

-0.06
0.26
0.07
0.08

-0.08

eff
AVG
P
T
PT
F
PF
TF
PTF

T
-
-
+
+
-
-
+
+

P
-
+
-
+
-
+
-
+

F
-
-
-
-
+
+
+
+

Quick Calculation of Effects - Yate's
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y =  51.15+.12P'+.45T'+.11F'^

86420
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1086420
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Effects, interactions and residuals must be 
checked...
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Conclusions

• From One way ANOVA to MANOVA.
• From “table” models to continuous models.
• The most important concepts are:

– There is a “true” model (with unknown “moments”)
– There is an “estimated” model.
– Each estimated model parameter is a “statistic”.
– Critical underlying assumptions must be checked.
– Residuals must be Independently, Identically, 

Normally Distributed (IIND).

(See chapter 7 and chapter 10 in BHH)


