Fractional Factorials

The concept of design Resolution

What if we need to clean the reactor every four runs?

Run	P	T	F	PT	PF	TF	PTF	block
1	-	-	-	$\mathbf{+}$	+	+	-	II
2	+	-	-	-	-	+	+	II
3	-	+	-	-	+	-	+	II
$\mathbf{4}$	+	+	-	+	-	-	-	I
5	-	-	+	+	-	-	+	II
6	+	-	+	-	+	-	-	I
7	-	+	+	-	-	+	-	I
8	+	+	+	+	+	+	+	II

This block will bias the PTF interaction. The generator is $\mathbf{4 = 1 2 3}$.

A simple Example in Blocking

- Do 4 experiments, at 2 levels of b, and estimate the effects of x_{1} and x_{2}

Blocking

What if we need to clean the reactor every two runs?

Run	P	T	F		T PF	TF		PTF	$\mathrm{b}_{1} \mathrm{~b}_{2}$	block
1	\bigcirc		-	+	+				${ }^{-}+$	
2	+	-	-	-	-	+		+	+ +	IV
3	-	+	-	-	+	-		+	+ -	III
4	+	+	-	+	-	-		-		I
5	-	-	+	+	-	-		+		III
6	+	-	+	-	+	-		-	- -	I
7	-	+	+	-				-	- +	II
8	+	+	+	+	+	+		+		IV

This will bias the PTF, TF interactions but also the P effect!!
We used two generators: $\quad 4=123\left(b_{1}\right) \quad 5=23\left(b_{2}\right)$

$$
45=123 \times 23=12233=1 \mathrm{II}=1
$$

Blocking

For two runs/block (4 blocks) better to use this blocking:

Run		T	F		PF			PTF	$b_{1} b_{2}$	blck
1			-	+	+	+			+ +	IV
2	+	-	-	-	-	+		+	- -	
3		+	-	-	+	-		+	- +	
4	+	+	-	+	-	-			+	III
5	-	-	+	+	-	-		+	+ -	III
6	+	-	+	-	+	-		-	+	
7	-	+	+	-	-			-	- -	
8										

This blocking will bias the PT, PF and TF We used two generators:
$4=12\left(b_{1}\right) \quad 5=13\left(b_{2}\right) \quad 45=12 \times 13=123=23$
The main effects are still recognizable!

Examples on Blocking

- 2^{4} design (16 runs) in 2 blocks of 8 runs:
- Need one generator: I = 12345 (i.e. block=5)

Run	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	block
1	-	-	-	-	
2	+	-	-		
3	-	-	-		
4	+	+	-		
5	-	+	-		
6	+	+	-		
7	-	+	+	-	
8	+	+	+	-	
9	-	-	+		
10	+	-	+		
11	-	+	+		
13	+	+	+		
14	-	-	+		
15	+	+	+		
16	+	+	+		
16	+				

Examples on Blocking

- 2^{4} design (16 runs) in 4 blocks of 4 runs:
- Need two generators: $B_{1}=124, B_{2}=134$

Run	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	$\mathbf{B 1}$	$\mathbf{B 2}$
1	-	-	-	-		
2	+	-	-	-		
3	-	+	-	-		
4	+	+	-	-		
5	-	-	+	-		
6	+	-	+	-		
7	-	+	+	-		
8	+	+	+	-		
9	-	-	-	+		
10	+	-	-	+		
11	-	+	-	+		
12	+	+	-	+		
13	-	-	+	+		
14	+	-	+	+		
15	-	+	+	+		

Can we measure the effect of the added variable?

Large Experiments have many insignificant Effects...
 significant conflicts...
relationship between column pairs
confounding pattern
estimate

$1=2345$	$l_{1} \rightarrow 1+2345$	$l_{1}=-2.0$
$2=1345$	$l_{2} \rightarrow 2+1345$	$l_{2}=20.5$
$3=1245$	$l_{3} \rightarrow 3+1245$	$l_{3}=0.0$
$4=1235$	$l_{4} \rightarrow 4+1235$	$l_{4}=12.25$
$5=1234$	$l_{5} \rightarrow 5+1234$	$l_{5}=-6.25$
$12=345$	$l_{12} \rightarrow 12+345$	$l_{12}=1.5$
$13=245$	$l_{13} \rightarrow 13+245$	$l_{13}=0.5$
$14=235$	$l_{14} \rightarrow 14+235$	$l_{14}=-0.75$
$15=234$	$l_{15} \rightarrow 15+234$	$l_{15}=1.25$
$23=145$	$l_{23} \rightarrow 23+145$	$l_{23}=1.5$
$24=135$	$l_{24} \rightarrow 24+135$	$l_{24}=10.75$
$25=134$	$l_{25} \rightarrow 25+134$	$l_{25}=1.25$
$34=125$	$l_{34} \rightarrow 34+125$	$l_{34}=0.25$
$35=124$	$l_{35} \rightarrow 35+124$	$l_{35}=2.25$
$45=123$	$I_{45} \rightarrow 45+123$	$l_{45}=-9.50$
$(\mathrm{I}=12345)$	$\left[l_{\mathrm{I}} \rightarrow\right.$ average $\left.+\frac{1}{2}(12345)\right]$	$\left(l_{\mathrm{I}}=65.25\right)$

Fractional Factorials

- Do I need 8 runs to estimate 4 significant parameters?
- 23-1 fractional factorial (half fraction)

The generating relation is $\mathbf{3 = 1 2}$

1=23 $\quad l_{1}=1+23$
2=13 $\quad l_{2}=2+13$
3=12 $\quad l_{3}=3+12$

$(\mathbf{I}=123) \ell_{\mathrm{H}}=\operatorname{avg}+123 \times 0.5$

Since 23, 13, 12 and 123 are insignificant, this design works. (This is a resolution III design.)

2^{3-1} Fractional Factorial

The 2^{3-1} fractional factorial is a complete factorial for any 2 of the 3 variables!

Combining Half Fractions

Run	P	T	F	PT	PF	TF	PTF	
1	-	-	+	+	-	-	+	$l_{1}=1+23$
2	+	-	-	-	-	+	+	$l_{2}=2+13$
3	-	+	$+$	-	+	-	+	$l_{3}=3+12$
4	+	+	+	+	+	+	+	$h_{\text {l }}=\mathrm{avg}+123 \times 0.5$
Run	P	T	F	PT	PF	TF	PTF	
5	+	+	-	-	+	-	-	1 1-23
6	-	+	+	+	+	+	-	$l_{2}=2-13$
7	+	-	+	+	-	+	-	$l_{3}=3-12$
8	-	-	-	-	-	-	-	$l_{1}^{\prime}=$ avg -123×0.5

Designs of "Resolution R"

No p-factor confounded with anything less than R-p factors.

Example: $\mathrm{I}=123$ is a resolution III design. $2^{3 \text { III }}$

Example: one-half fractional of the LPCVD experiment
I = 123 => 4 runs!
$\ell_{1}=(1+23) \quad$ Peff $=0.32$
$h_{2}=(2+13)$
Teff $=0.97$
$h_{3}=(3+12)$
Feff $=0.15$
avg $=(A v g+0.5123) \quad A v g=5.11$

2^{5-1} Fractional Factorial

Run	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
1	-	-	-	-	+
2	+	-	-	-	-
3	-	+	-	-	-
4	+	+	-	-	+
5	-	-	+	-	-
6	+	-	+	-	+
7	-	+	+	-	+
8	+	+	+	-	-
9	-	-	-	+	-
10	+	-	-	+	+
11	-	+	-	+	
12	+	+	-	+	-
13	-	-	+	+	+
14	+	-	+	+	-
15	-	+	+	+	-
16	+	+	+	+	+

Obtaining the Highest Possible Resolution

- Write a full factorial for the first $\mathrm{k}-1$ variables
- Associate the kth variable with $+/-$ the interaction of the $k-$ 1 variables.

> | A fractional factorial of resolution R contains complete |
| :--- |
| factorials in every set of R-1 variables! |

Example: Modeling Plasma Etch Anisotropy

Parameter	Range	Units
RF Power	$300-400$	Watts
Pressure	$200-300$	mTorr
Electrode Spacing	$1.2-1.8$	cm
CCl_{4} Flow	$100-150$	sccm
He Flow	$50-200$	sccm
O_{2} Flow	$10-20$	sccm

- The original experiment included $2^{6-1}=32$ runs (plus 3 center point replications).
- A $2^{6-2}=16$ quarter fraction was used for anisotropy, because the measurements were costly and noisy.

Example: Designing the 2^{6-2} quarter fraction

Blocked Fractional Factorial Experiments

- Fractional factorials can be blocked. Just choose interactions that are unimportant.

Typical Designs are available...

number of variables	number of runs	degree of fractionation	type of design	method of introducing "new" factors	blocking (with no main effect or interaction confounded)	method of introducing blocks
5	16	$\frac{1}{2}$	22^{-1}	$\pm 5=1234$	not available	
6	32	$\frac{1}{2}$	$2 \mathrm{VIV}^{6-1}$	$\pm 6=12345$	two blocks of 16 runs	$\mathrm{B}_{1}=123$
7	64	$\frac{1}{2}$	$2 \mathrm{vil}^{7-1}$	$\pm 7=123456$	eight blocks of 8 runs	$\begin{aligned} & B_{1}=1357 \\ & B_{2}=1256 \\ & B_{3}=1234 \end{aligned}$
8	64	$\frac{1}{4}$	$2 \mathrm{v}^{8-2}$	$\begin{aligned} & \pm 7=1234 \\ & \pm 8=1256 \end{aligned}$	four blocks of 16 runs	$\begin{aligned} & \mathbf{B}_{1}=135 \\ & \mathbf{B}_{2}=348 \end{aligned}$
9	128	$\frac{1}{4}$	$2 \mathrm{VIV}^{-2}$	$\begin{aligned} & \pm 8=13467 \\ & \pm 9=23567 \end{aligned}$	eight blocks of 16 runs	$\begin{aligned} & \mathbf{B}_{1}=138 \\ & \mathbf{B}_{2}=129 \\ & \mathbf{B}_{3}=789 \end{aligned}$
10	128	$\frac{1}{8}$	$2 \mathbf{v}^{10-3}$	$\begin{aligned} \pm 8 & =1237 \\ \pm 9 & =2345 \\ \pm \overline{10} & =1346 \end{aligned}$	eight blocks of 16 runs	$\begin{aligned} & B_{1}=149 \\ & B_{2}=12 \overline{10} \\ & B_{3}=89 \overline{10} \end{aligned}$
11	128	$\frac{1}{16}$	$2 \mathrm{v}^{1-4}$	$\begin{aligned} \pm 8 & =1237 \\ \pm 9 & =2345 \\ \pm \overline{10} & =1346 \\ \pm \overline{11} & =1234567 \end{aligned}$	eight blocks of 16 runs	$\begin{aligned} & B_{1}=149 \\ & B_{2}=12 \overline{10} \\ & B_{3}=89 \overline{10} \end{aligned}$

Resolving Ambiguities in Fractional Factorials

Upon the completion of a fractional factorial, selected confoundings can be clarified with selected additional runs.

$$
5=123 \quad 6=234
$$

Suppose that 23 is significant. Since $l_{23}=(23+15+64)$ we need a minimum of 2 additional runs. Because of potential blocking between the main experiment and the supplement, we actually need 3 additional runs. One choice is:
\(\left.\left|\begin{array}{ccc}23 \& 15 \& 64

\hdashline+ \& \mathbf{-} \& -

- \& - \& -\end{array}\right| \quad\)\begin{tabular}{l}
Rf Pr El F1 F2 F3

 \right\rvert\,

Results

\mathbf{R}_{1}

\mathbf{R}_{2}

\mathbf{R}_{3}
\end{tabular}

Finally, solve the system:

Conclusion

- Factorial experiments can accommodate blocking, if one controls the "conflicts" in estimating effects.
- Fractional factorial experiments take advantage of the insignificance of higher order terms, to accommodate many variables with few runs.
- Experiments can be done in stages, initially screening, and later analyzing important effects in detail.
(see chapter 13 in BHH or chapter 12 in Montgomery)

