Spanos & Poolla

Two-Level Factorials (cont.)

Blocking and Confounding Fractional Factorials The concept of design Resolution

Lecture 7: Fractional Factorials

EE290H F03

1

Spanos & Poolla

Blocking

What if we need to clean the reactor every four runs?

Run	Ρ	Т	F	РТ	PF	TF	PTF	block
1	-	-	-	+	+	+	-	
2	+	-	-	-	-	+	+	11
3	-	+	-	-	+	-	+	
4	+	+	-	+	-	-	-	1
5	-	-	+	+	-	-	+	11
6	+	-	+	-	+	-	-	I
7	-	+	+	-	-	+	-	1
8	+	+	+	+	+	+	+	II

This block will bias the PTF interaction. The generator is **4=123**.

A simple Example in Blocking

 Do 4 experiments, at 2 levels of b, and estimate the effects of x₁ and x₂

Lecture 7: Fractional Factorials

EE290H F03

Spanos & Poolla

3

Blocking

What if we need to clean the reactor every two runs?

Run	Ρ	т	F	PT	PF	TF	PTF	$b_1 b_2$	block
1	-	-	-	+	+	+	-	- +	П
2	+	-	-	-	-	+	+	+ +	IV
3	-	+	-	-	+	-	+	+ _	
4	+	+	-	+	-	-	-		I
5	-	-	+	+	-	-	+	+ _	
6	+	-	+	-	+	-	-		
7	-	+	+	-	-	+	-	- +	
8	+	+	+	+	+	+	+	+ +	l IV

This will bias the PTF, TF interactions but also the P effect!!

We used two generators: 4=123 (b₁) 5=23 (b₂) 45 = 123x23 = 12233 = 1II =1

Blocking

Run	P	т	F	PT	PF	TF	PTF	b₁	b ₂	blck
1	-	-	-	+	+	+	-	+	+	IV
2	+	-	-	-	-	+	+	-	-	I
3	-	+	-	-	+	-	+	-	+	11
4	+	+	-	+	-	-	-	+	-	111
5	-	-	+	+	-	-	+	+	-	111
6	+	-	+	-	+	-	-	-	+	- 11
7	-	+	+	-	-	+	-	-	-	
8	+	+	+	+	+	+	+	+	+	IV

For two runs/block (4 blocks) better to use this blocking:

This blocking will bias the PT, PF and TF We used two generators: $4=12 (b_1) 5=13 (b_2) 45 = 12x13 = 123 = 23$ The main effects are still recognizable!

Lecture 7: Fractional Factorials

EE290H F03

Spanos & Poolla

5

Examples on Blocking

- 2⁴ design (16 runs) in 2 blocks of 8 runs:
- Need one generator: I = 12345 (i.e. block=5)

Run	Α	В	С	D	block
	-	-	-	-	
1 2 3	+	-	-	-	
3	-	+	-	-	
4 5	+	+	-	-	
5	-	-	+	-	
6	+	-	+	-	
7 8 9 10 11 12 13 14 15	-	+	+	-	
8	+	+	+	-	
9	-	-	-	+	
10	+	-	-	+	
11	-	+	-	+	
12	+	+	-	+	
13	-	-	+	+	
14	+	-	+	+	
15	-	+	+	+	
16	+	+	+	+	

Examples on Blocking

B2

- 2⁴ design (16 runs) in 4 blocks of 4 runs:
- Need two generators: B₁=124, B₂=134

	90.				1
Run	Α	В	С	D	B 1
1	-	-	-	-	
2	+	-	-	-	
3	-	+	-	-	
4	+	+	-	-	
5	-	-	+	-	
6	+	-	+	-	
7	-	+	+	-	
8	+	+	+	-	
9	-	-	-	+	
10	+	-	-	+	
11	-	+	-	+	
12	+	+	-	+	
13	-	-	+	+	
14	+	-	+	+	
15	-	+	+	+	
1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 12 10 11 12 10 11 12 10 11 10 11 10 10 10 10 10 10 10 10 10	+	+	+	+	
					I

Lecture 7: Fractional Factorials

EE290H F03

7

Spanos & Poolla

Can we measure the effect of the added variable?

EE290H F03 Large experiments can be cut to half without significant conflicts...

relationship between column pairs	confounding pattern	estimate
1 = 2345	$l_1 \rightarrow 1 + 2345$	$l_1 = -2.0$
2 = 1345	$l_2 \rightarrow 2 + 1345$	$l_2 = 20.5$
3 = 1245	$l_3 \rightarrow 3 + 1245$	$l_3 = 0.0$
4 = 1235	$l_4 \rightarrow 4 + 1235$	$l_4 = 12.25$
5 = 1234	$l_5 \rightarrow 5 + 1234$	$l_5 = -6.25$
12 = 345	$l_{12} \rightarrow 12 + 345$	$l_{12} = 1.5$
13 = 245	$l_{13} \rightarrow 13 + 245$	$l_{13} = 0.5$
14 = 235	$l_{14} \rightarrow 14 + 235$	$l_{14} = -0.75$
15 = 234	$l_{15} \rightarrow 15 + 234$	$l_{15} = 1.25$
23 = 145	$l_{23} \rightarrow 23 + 145$	$l_{23} = 1.5$
24 = 135	$l_{24} \rightarrow 24 + 135$	$l_{24} = 10.75$
25 = 134	$l_{25} \rightarrow 25 + 134$	$l_{25} = 1.25$
34 = 125	$l_{34} \rightarrow 34 + 125$	$l_{34} = 0.25$
35 = 124	$l_{35} \rightarrow 35 + 124$	$l_{35} = 2.25$
45 = 123	$l_{45} \rightarrow 45 + 123$	$l_{45} = -9.50$
(1 = 12345)	$[l_1 \rightarrow \text{average} + \frac{1}{2}(12345)]$	$(l_{\rm I} = 65.25)$

Fractional Factorials

- Do I need 8 runs to estimate 4 significant parameters?
- 2³⁻¹ fractional factorial (half fraction)

The generating relation is 3=12	Run	Р	Т	F	PT
	1	-	-	+	+
1=23 $l_1 = 1 + 23$ 2=13 $l_2 = 2 + 13$	1 2 3 4	+	-	-	-
1=23 '	3	-	+	-	-
	4	+	+	+	+
3=12 $l_3 = 3 + 12$					
(I=123) ℓ _I = avg + 123x0.5					

Since 23, 13, 12 and 123 are insignificant, this design works. (This is a resolution III design.)

EE290H F03

Spanos & Poolla

2³⁻¹ Fractional Factorial

The 2³⁻¹ fractional factorial is a complete factorial for any 2 of the 3 variables!

Run	Р	Т	F	PT	PF	TF	PTF	
1	-	-	+	+	-	-	+	$l_1 = 1 + 23$
2	+	-	-	-	-	+	+	l ₂ = 2 + 13
- 3 4	-	+	-	-	+	-	+	$l_3 = 3 + 12$
4	+	+	+	+	+	+	+	$l_{\rm r} = avg + 123x0.5$
Run	P	Т	F	PT	PF	TF	PTF	¹¹ 1 00
Run 5	P +	T +	F -	<u>РТ</u> -	PF +	<u>TF</u>	<u> </u>	$l'_1 = 1 - 23$
	P + -	T + +	F - +	PT - +	PF + +	TF - +	<u>PTF</u> - -	$l'_1 = 1 - 23$ $l'_2 = 2 - 13$
5	P + - +	T + +	F - + +	PT - + +	PF + +	TF - + +	PTF - -	•

Combining Half Fractions

Lecture 7: Fractional Factorials

EE290H F03

13

Spanos & Poolla

Designs of "Resolution R"

No p-factor confounded with anything less than R-p factors.

Example: I = 1 2 3 is a resolution III design. 2^{3-1}_{III}

Example: one-half fractional of the LPCVD experiment I = 1 2 3 => 4 runs! $l_1 = (1 + 2 3)$ Peff = 0.32 $l_2 = (2 + 1 3)$ Teff = 0.97 $l_3 = (3 + 1 2)$ Feff = 0.15 $l_{avg} = (Avg + 0.5 123)$ Avg = 5.11

2⁵⁻¹ Fractional Factorial

Run	Α	В	С	D	E
1	-	-	-	-	+
2	+	-	-	-	-
3	-	+	-	-	-
2 3 4 5	+	+	-	-	+
5	-	-	+	-	-
6	+	-	+	-	+
7	-	+	+	-	+
8	+	+	+	-	-
9	-	-	-	+	-
10	+	-	-	+	+
11	-	+	-	+	+
12	+	+	-	+	-
13	-	-	+	+	+
6 7 9 10 11 12 13 14 15	+	-	+	+	-
15	-	+	+	+	-
16	+	+	+	+	+

Lecture 7: Fractional Factorials

EE290H F03

15

Spanos & Poolla

Obtaining the Highest Possible Resolution

- Write a full factorial for the first k-1 variables
- Associate the kth variable with +/- the interaction of the k-1 variables.

A fractional factorial of resolution R contains complete factorials in every set of R-1 variables!

Example: Modeling Plasma Etch Anisotropy

Parameter	Range	Units
RF Power	300-400	Watts
Pressure	200-300	mTorr
Electrode Spacing	1.2-1.8	cm
CCl ₄ Flow	100-150	sccm
He Flow	50-200	sccm
O ₂ Flow	10-20	sccm

- The original experiment included 2⁶⁻¹ = 32 runs (plus 3 center point replications).
- A 2⁶⁻² = 16 quarter fraction was used for anisotropy, because the measurements were costly and noisy.

Lecture 7: Fractional Factorials

EE290H F03

Spanos & Poolla

17

Example: Designing the 2⁶⁻² quarter fraction

	1	2	3	4	5	6	5 = 123	6 = 234	2 ⁶⁻² 1V
Run	R	f Pi	r E	l F	I Fa	2 F 3			1,
1	-	-	-	-					
2	+	-	-	-					
2 3 4 5 6 7	-	+	-	-					
4	+	+	-	-					
5	-	-	+	-					
6	+	-	+	-					
7	-	+	+	-					
8	+	+	+	-					
8 9	-	-	-	+					
10	+	-	-	+					
11	-	+	-	+					
12	+	+	-	+					
13	-	-	+	+					
14	+	-	+	+					
15	-	+	+	+					
16	+	+	+	+					

2⁶⁻²_{IV}

6 = 234

Blocked Fractional Factorial Experiments

• Fractional factorials can be blocked. Just choose interactions that are unimportant.

	1	2	3	4	5	6	5 = 123
Run			-			-	B 1 B 2 B 3
1				• •			
-	-	-	-	-	-	-	
2	+	-	-	-	+	-	
3	-	+	-	-	+	+	
4	+	+	-	-	-	+	
5	-	-	+	-	+	+	
6	+	-	+	-	-	+	
7	-	+	+	-	-	-	
8	+	+	+	-	+	-	
9	-	-	-	+	-	+	
10	+	-	-	+	+	+	
11	-	+	-	+	+	-	
12	+	+	-	+	-	-	
13	-	-	+	+	+	-	
14	+	-	+	+	-	-	
15	-	+	+	+	-	+	
16 Lecture 7: Fractional F	+ Factorial	*	+	+	+	+	

EE290H F03

Spanos & Poolla

19

Typical Designs are available...

	2 1		U			
number of variables	number of runs	degree of fractionation	type of design	method of introducing "new" factors	blocking (with no main effect or interaction confounded)	method of introducing blocks
5	16	1/2	2_V^{5-1}	<u>+</u> 5 = 1234	not available	
6	32	$\frac{1}{2}$	2_{VI}^{6-1}	$\pm 6 = 12345$	two blocks of 16 runs	$B_1 = 123$
7	64	$\frac{1}{2}$	2 <mark>7-1</mark> /	±7 = 123456	eight blocks of 8 runs	$B_1 = 1357$ $B_2 = 1256$ $B_3 = 1234$
8	64	$\frac{1}{4}$	2_{v}^{8-2}	$\pm 7 = 1234$ $\pm 8 = 1256$	four blocks of 16 runs	$B_1 = 135$ $B_2 = 348$
9	128	1 4	2 ⁹⁻²	$\pm 8 = 13467$ $\pm 9 = 23567$	eight blocks of 16 runs	$B_1 = 138$ $B_2 = 129$ $B_3 = 789$
10	128	18 8	2_{V}^{10-3}	$\pm 8 = 1237$ $\pm 9 = 2345$ $\pm 10 = 1346$	eight blocks of 16 runs	$B_1 = 149$ $B_2 = 12\overline{10}$ $B_3 = 89\overline{10}$
11	128	<u> </u> 16	$2_{v}^{i_{1}-4}$	$\pm 8 = 1237$ $\pm 9 = 2345$ $\pm \overline{10} = 1346$ $\pm \overline{11} = 1234567$	eight blocks of 16 runs	$B_1 = 149$ $B_2 = 12\overline{10}$ $B_3 = 89\overline{10}$

Resolving Ambiguities in Fractional Factorials

Upon the completion of a fractional factorial, selected confoundings can be clarified with selected additional runs.

5 = 123 6 = 234

Suppose that 23 is significant. Since $l_{23} = (23 + 15 + 64)$ we need a minimum of 2 additional runs. Because of potential blocking between the main experiment and the supplement. we actually need 3 additional runs. One choice is:

Lecture 7: Fractional Factorials

EE290H F03

Spanos & Poolla

21

Conclusion

- Factorial experiments can accommodate blocking, if one controls the "conflicts" in estimating effects.
- Fractional factorial experiments take advantage of the insignificance of higher order terms, to accommodate many variables with few runs.
- Experiments can be done in stages, initially screening, and later analyzing important effects in detail.

(see chapter 13 in BHH or chapter 12 in Montgomery)