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Robust Design

A New Definition of Quality.
The Signal-to-Noise Ratio.
Orthogonal Arrays.
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The Taguchi Philosophy

Quality is related to the total loss to society due to 
functional and environmental variance

Taguchi's method focuses on Robust Design through use of:

•   S/N Ratio to quantify quality

•   Orthogonal Arrays to investigate quality

Taguchi starts with a new definition of Quality:
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Meeting the specs vs. hitting the target

better quality worse quality

mm-5 m+5
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Quadratic Loss Function:

L(y) = k (y - m)2

Fig 2.3 pp 18 from
Quality Engineering Using Robust Design

by Madhav S. Phadke
Prentice Hall 1989
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Quadratic Loss Function on Normal Distribution

Average quality loss due to µ and σ:

Fig 2.5 pp 26

E(Q) = k [(µ-m)  + σ ] 
2 2
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Exploiting non-linearity:

Fig 2.6 pp 28
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Parameters are classified according to function:

Fig 2.7 pp 30

Lecture 9: Robust Design

Spanos & PoollaEE290H F03

8

Orthogonal Arrays

b = (XTX) -1XTy V(b)  =     (XTX) -1σ2

During Regression Analysis, an orthogonal arrangement of 
the experiment gave us independent model parameter 
estimates:

Orthogonal arrays have the same objective:

For every two columns all possible  factor combinations 
occur equal times.

L4(23)    L9(34)     L12(211)    L18(21 x 37)
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Simple CVD experiment for defect reduction
max  n = -10 log  (MSQ def)

10
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Simple CVD experiment for defect reduction (cont)

Using the L9 orthogonal array:
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Estimation of Factor Effects (ANOM)

m = 19 η1+η2+η3+...+η9

mA 1
 = 1

3
η1+η2+η3

mA 2
 = 1

3
η4+η5+η6

mA 3
 = 1

3
η7+η8+η9
...

mB2
 = 1

3
η2+η5+η8
...

mD3
 = 1

3
η3+η4+η8

η A i ,Bj,Ck,Dl = µ+αi+βj+γk+δ l+e
αi = 0Σ βi = 0Σ γ i = 0Σ δi = 0Σ
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Analysis of CVD defect reduction experiment

Fig 3.1 pp 46
Tab 3.4 pp 55
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ANOVA for CVD defect reduction experiment

Grand total sum of squares: ηi2 = 19,425 (dB)2Σ
i=1

9

Total sum of squares: ηi-m 2 = 3,800 (dB)2Σ
i=1

9

Sum of squares due to mean: m2 = 15,625 (dB)2Σ
i=1

9

Sum of squares due to error: ei2 = ??? (dB)2Σ
i=1

9

Sum of squares due to A:  3 mA i-m 2 = 2,450 (dB)2Σ
i=1

3
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ANOVA for CVD defect reduction experiment (cont)
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Estimation of Error Variance

The experimental error is estimated from the ANOVA 
residuals.

It is then used to estimate the error of the effects and to 
determine their significance at the 5% level.
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Confirmation Experiment
Once the optimum choice has been made, it is tested by 
performing a confirmation run.

This run is used to "validate" the model as well as confirm 
the improvements in the process.

Variance of prediction (for the model)

σpred2 = σe2

n0
 +  σe2

nr

This gives us +/-2σ limits on the confirmation experiment.

1
n0

σe2 = 1
n + 1

nA1
 - 1n  + 1

nB1
 - 1n  σe2
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The additive model

Fig 3.3 pp 63, enlarged 120%

Since we assumed additive model, we must make sure 
that there are no interactions:
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Example: Large CVD experiment.

Objectives:

a) reduce defects  n = -10 log  (MSQ Def)

b) maximize S/N of rate n '= 10 log  (µ / σ )

c) adjust poly thickness to a 3600 Å target.

10

10

2 2
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Choosing the Control Factors

Tab 4.6-7 pp 88-90
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Using the L18 orthogonal array...

Tab 4.3 pp 78, enlarged 120%
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Data summary for large CVD experiment:

Tab 4.5 pp 85, enlarged 120%
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Data analysis for large CVD experiment (cont)

Fig 4.5 pp 86, enlarged 120%
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ANOVA tables for large CVD experiment:
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ANOVA tables for large CVD experiment (cont)
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ANOVA tables for large CVD experiment  (cont)
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Prediction Using the Additive Model

Tab 4.6-7 pp 88-90
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Verification for large CVD experiment

Tab 4.10-11 pp 92

for further reading: Quality Engineering Using Robust Design by Madhav S. Phadke
Prentice Hall 1989 Lecture 9: Robust Design
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Why use S/N Ratios?

• They lead to an optimum through a monotonic function.

• They help improve additivity of the effects.
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Taguchi vs. RSM

Taguchi RSM

Small number of runs Explicit control of Interactions

Engineering Intuition Statistical Intuition

“Complete” package Training Issues

Additive Models More General Models
Orthogonal Arrays Fractional Factorials

A “Philosophy” A Tool

Lecture 9: Robust Design

Spanos & PoollaEE290H F03

30

Design of Experiments
l Comparison of Treatments

l Blocking and Randomization

l Reference Distributions

l ANOVA

l MANOVA

l Factorial Designs

l Two Level Factorials

l Blocking

l Fractional Factorials

l Regression Analysis

l Robust Design

Analysis

Modeling


