

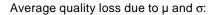
Spanos & Poolla

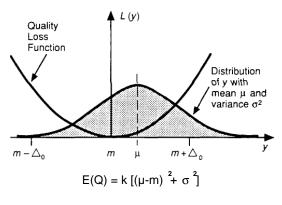
EE290H F03

Spanos & Poolla

2

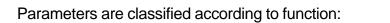
Spanos & Poolla

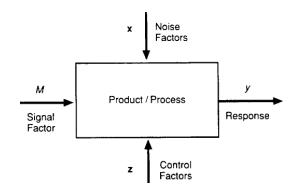

5

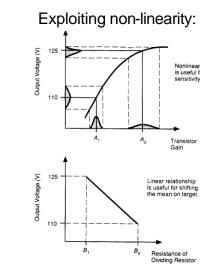

Spanos & Poolla

EE290H F03

Spanos & Poolla


Quadratic Loss Function on Normal Distribution





EE290H F03

Lecture 9: Robust Design

EE290H F03

Spanos & Poolla

6

Orthogonal Arrays

During Regression Analysis, an orthogonal arrangement of the experiment gave us independent model parameter estimates:

$$b = (X^T X)^{-1} X^T y$$
 $V(b) = (X^T X)^{-1} \sigma^2$

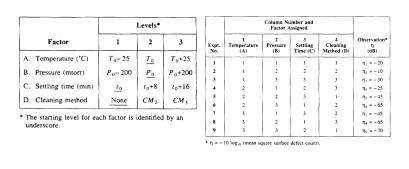
Orthogonal arrays have the same objective:

For every two columns all possible factor combinations occur equal times.

$$L_4(2^3)$$
 $L_9(3^4)$ $L_{12}(2^{11})$ $L_{18}(2^1 \times 3^7)$

Lecture 9: Robust Design

Lecture 9: Robust Design


8

9

Spanos & Poolla

Simple CVD experiment for defect reduction

max $n = -10 \log_{10} (MSQ def)$

Lecture 9: Robust Design

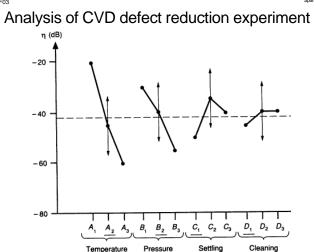
EE290H F03

$$\begin{split} m &= \frac{1}{9} [\eta_1 + \eta_2 + \eta_3 + ... + \eta_9] \\ m_{A_1} &= \frac{1}{3} [\eta_1 + \eta_2 + \eta_3] \\ m_{A_2} &= \frac{1}{3} [\eta_4 + \eta_5 + \eta_6] \\ m_{A_3} &= \frac{1}{3} [\eta_7 + \eta_8 + \eta_9] \\ ... \\ m_{B_2} &= \frac{1}{3} [\eta_2 + \eta_5 + \eta_8] \\ ... \\ m_{D_3} &= \frac{1}{3} [\eta_3 + \eta_4 + \eta_8] \\ \eta(A_i, B_j, C_k, D_l) &= \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + e \end{split}$$

 $\sum \alpha_i = 0 \quad \sum \beta_i = 0 \quad \sum \gamma_i = 0 \quad \sum \delta_i = 0$

Simple CVD experiment for defect reduction (cont)

Using the L9 orthogonal array:


L₉ (3⁴)

L_9 (3⁴) Orthogonal Array

Expt.		Column						
No.	1	2	3	4				
1	1	1	1	1				
1 2 3	1	2	2	2				
3	1	3	3	2 3				
4	2	1	2	3				
4 5 6	2	2	3	ł				
6	2	3	1	2				
7	3	1	3	2 3				
8	3	2	1	3				
9	3	3	2	1				

Lecture 9: Robust Design

EE290H F03

Lecture 9: Robust Design

Lecture 9: Robust Design

10

Spanos & Poolla

ANOVA for CVD defect reduction experiment Grand total sum of squares: $\sum_{i=1}^{9} \eta_i^2 = 19,425 \text{ (dB)}^2$ Sum of squares due to mean: $\sum_{i=1}^{9} m^2 = 15,625 \text{ (dB)}^2$ Total sum of squares: $\sum_{i=1}^{9} (\eta_i \text{-m})^2 = 3,800 \text{ (dB)}^2$ Sum of squares due to A: $3 \sum_{i=1}^{3} (m_{A_i}\text{-m})^2 = 2,450 \text{ (dB)}^2$

Sum of squares due to error:
$$\sum_{i=1}^{9} e_i^2 = ??? (dB)^2$$

Lecture 9: Robust Design

EE290H F03

13

Estimation of Error Variance

The experimental error is estimated from the ANOVA residuals.

It is then used to estimate the error of the effects and to determine their significance at the 5% level.

15

Factor/Source	Degrees of Freedom	Sum of Squares	Mean Square	F
A. Temperature	2	2450	1225	12.25
B. Pressure	2	950	475	4.75
C. Settling time	2	350*	175	
D. Cleaning method	2	50*	25	
Error	0	0	-	
Total	8	3800		
(Error)	(4)	(400)	(100)	

* Indicates sum of squares added together to estimate the pooled error sum of squares indicated by parentheses. F ratio is calculated by using the pooled error mean square.

```
Lecture 9: Robust Design
```

EE290H F03

EE290H F03

Spanos & Poolla

14

Confirmation Experiment

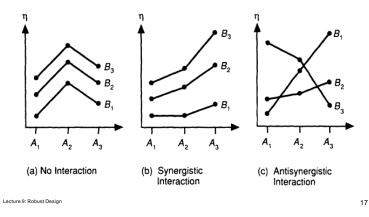
Once the optimum choice has been made, it is tested by performing a confirmation run.

This run is used to "validate" the model as well as confirm the improvements in the process.

Variance of prediction (for the model)

$$\frac{1}{n_0}\sigma_e^2 = \left[\frac{1}{n} + \left[\frac{1}{n_{A_1}} - \frac{1}{n}\right] + \left[\frac{1}{n_{B_1}} - \frac{1}{n}\right]\right]\sigma_e^2$$

$$\sigma_{\text{pred}}^2 = \frac{\sigma_e^2}{n_0} + \frac{\sigma_e^2}{n_r}$$


This gives us +/- 2σ limits on the confirmation experiment.

16

EE290H F03

The additive model

Since we assumed additive model, we must make sure that there are no interactions:

EE290H F03

Lecture 9: Robust Design

Choosing the Control Factors

	Levels*					
Factor	1	2	3			
A. Deposition temperature (*C)	$T_0 - 25$	<u>T</u> ₀	$T_0 + 25$			
B. Deposition pressure (mtorr)	$P_0 - 200$	P ₀	$P_0 + 200$			
C. Nitrogen flow (sccm)	No	$N_0 - 150$	$N_0 - 75$			
D. Silane flow (sccm)	$S_0 - 100$	$S_0 - 50$	So			
E. Settling time (min)	<u>to</u>	t ₀ +8	t ₀ +16			
F. Cleaning method	None	СМ 2	СМ3			

* Starting levels are identified by underscore.

Spanos & Poolla

Example: Large CVD experiment.

Objectives:

- a) reduce defects $n = -10 \log_{10} (MSQ Def)$
- b) maximize S/N of rate $n = 10 \log_{10} (\mu^2 / \sigma^2)$
- c) adjust poly thickness to a 3600 Å target.

Lecture 9: Robust Design

Spanos & Poolla

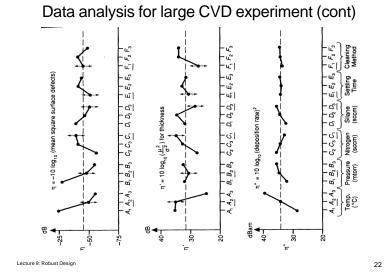
18

EE290H F03

Using the L₁₈ orthogonal array...

Expt. No.	Temperature	Pressure	Nitrogen	Silane	Settling Time	Cleaning Method
1	$T_0 - 25$	$P_0 - 200$	No	$S_0 - 100$	t ₀	None
2	$T_0 - 25$	Po	$N_0 - 150$	$S_0 - 50$	t ₀ +8	CM ₂
3	T ₀ -25	$P_0 + 200$	No-75	S ₀	t ₀ +16	СМ 3
4	T ₀	$P_0 - 200$	No	$S_0 - 50$	t ₀ +8	СМ 3
5	T ₀	P ₀	N ₀ - 150	S .	10+16	None
6	To	$P_0 + 200$	$N_0 - 75$	$S_0 - 100$	10	CM ₂
7	$T_0 + 25$	$P_0 - 200$	$N_0 - 150$	$S_0 - 100$	t ₀ +16	СМ 3
8	$T_0 + 25$	P ₀	$N_0 - 75$	$S_0 - 50$	10	None
9	$T_0 + 25$	$P_{0} + 200$	No	<i>S</i> ₀	10+8	СМ 2
10	$T_0 - 25$	$P_0 - 200$	N ₀ -75	S.	t ₀ +8	None
11	T ₀ -25	Ρ.	N ₀	$S_0 - 100$	t ₀ +16	CM₂
12	$T_0 - 25$	$P_0 + 200$	$N_0 - 150$	$S_0 - 50$	10	СМ,
13	T ₀	$P_0 - 200$	N ₀ - 150	<i>S</i> ₀	10	CM ₂
14	To	Po	$N_0 - 75$	$S_0 - 100$	t ₀ +8	СМ 3
15	T ₀	$P_{0} + 200$	No	$S_0 - 50$	t ₀ +16	None
16	$T_0 + 25$	$P_0 - 200$	N ₀ -75	$S_0 - 50$	t ₀ + 16	CM ₂
17	$T_0 + 25$	P ₀	N ₀	S ₀	10	CM ₃
18	$T_0 + 25$	$P_0 + 200$	$N_0 - 150$	$S_0 - 100$	t ₀ +8	None

Data summary for large CVD experiment:


	FI A	2	ŕ	5	Experiment Condition			5	Defects	Thickness	iness	Rate
Exnt	ţ	1	2	at 1	Matrix*	•			н	F	л,	ŗ,
No.	e	А	в	С	D	(*)	e	T	(dB)). •	(dB)	(dBam)
-		-	-	-	-	-	-	-	0.51	1958	35.22	23.23
2			13	10	i)	2	2	12	-37.30	5255	35.76	31.27
J.	-		ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	-45.17	5965	36.02	32.34
٠	-	i J	-	\rightarrow	5	ы	ŝ	دره	-25.76	2121	42.25	31.15
S	-	1.1	15	1.3	ŝ	ŝ	-	-	-62.54	4572	21.43	37.27
6	_	IJ	ŝ	دري	-		5	IJ	-62.23	2891	32.91	33.89
7	-	ω	-	1.3	~	ω	1.2	ω	- 59.88	3375	21.39	37.68
8	_	ŝ	ы	ŝ	IJ	-	ŝ	-	-71.69	4527	22.84	40.46
9	_	ŝ	ŝ	-	ŝ	13	-	12	-68.15	3946	30.60	41.21
10	ы			دره	ŝ	15	15		-3.47	3415	26.85	27.89
Ξ	ы		13		-	دب	ŝ	15	-5.08	2535	38.80	26.02
21	ы		ŝ	1.J	i S	-	-	ω	-54.85	5781	38.06	31.82
13	ы	i)	-	12	ω	-	з	13	-49.38	2723	32.07	34.50
T.	15	i J	15	دري	-	15	-	S	- 36.54	2852	43.34	33.20
15	ы	15	دين	-	1 J	ŝ	12	-	-64.18	3201	37.44	34.76
16	ы	ŝ	-	ŝ	ы	ŝ		15	-27.31	3105	31.86	37.71
17	ы	ŝ	12	-	ŝ		13	U)	-71.51	4074	22.01	40.45
18	ы	دري	ŝ	5	-	J	ω	-	-72.00	306	18.42	39.22

Lecture 9: Robust Design

EE290H F03

21

Spanos & Poolla

Spanos & Poolla

ANOVA tables for large CVD experiment:

	Average	η by Fact (dB)	or Level				
Factor	1	2	3	Degree of Freedom	Sum of Squares	Mean Square	F
A. Temperature	- 24.23	- 50.10	- 61.76	2	4427	2214	27
B. Pressure	- 27.55	- 47.44	- 61.10	2	3416	1708	21
C. Nitrogen	- 39.03	- 55.99	- 41.07	2	1030	515	6.4
D. Silane	- 39.20	- 46.85	- 50.04	2	372	186	2.3
E. Settling time	-51.52	- 40.54	- 44.03	2	378	189	2.3
F. Cleaning method	-45.56	- 41.58	- 48.95	2	164†	82	
Ептог				5	405†	81	
Total				17	10192		
(Error)				(7)	(569)	(81)	

* Overall mean $\eta = -45.36$ dB. Underscore indicates starting level.

† Indicates the sum of squares added together to form the pooled error sum of squares shown in parentheses.

23

EE290H F03

EE290H F03

ANOVA tables for large CVD experiment (cont)

	Avera	Average η' by Level (dB)					
Factor	1	2	3	Degree of Freedom	Sum of Squares	Mean Square	F
A. Temperature	35.12	34.91	24.52	2	440	220	16
B. Pressure	31.61	30.70	32.24	2	. 7†	3.5	
C. Nitrogen	34.39	27.86	32.30	2	134	67	5.0
D. Silane	31.68	34.70	28.17	2	128	64	4.8
E. Settling time	30.52	32.87	31.16	2	18†	9	
F. Cleaning method	27.04	33.67	33.85	2	181	90.5	6.8
Ептог				5	96†	19.2	
Total				17	1004	59.1	
(Error)				(9)	(121)	(13.4)	

* Overall mean $\eta' = 31.52$ dB. Underscore indicates starting level.

+ Indicates the sum of squares added together to form the pooled error sum of squares shown in parentheses.

24

ANOVA tables for large CVD experiment (cont)

	Average η" by Factor Level (dBam)						
Factor	1	2	3	Degree of Freedom	Sum of Squares	Mean Square	F
A. Temperature	28.76	34.13	39.46	2	343.1	171.5	553
B. Pressure	32.03	34.78	35.54	2	41.0	20.5	66
C. Nitrogen	32.81	35.29	34.25	2	18.7	9.4	30
D. Silane	32.21	34.53	35.61	2	36.3	18.1	58
E. Settling time	34.06	33.99	34.30	2	0.3†	0.2	
F. Cleaning method	33.81	34.10	34.44	2	1.2†	0.6	
Error				5	1.3†	0.26	
Total				17	441.9	25.9	
(Error)				(9)	(2.8)	(0.31)	

* Overall mean $\eta'' = 34.12$ dBam. Underscore indicates starting level.

† Indicates the sum of squares added together to form the pooled error sum of squares shown in parentheses.

Lecture 9: Robust Design

25

Spanos & Poolla

Prediction Using the Additive Model

		Starti	ng Condition			Optim	um Condition	1
		c	ontribution†	(dB)		C	ontribution†	(dB)
Factor	Setting	Surface Defects	Thickness	Deposition Rate	Setting	Surface Defects	Thickness	Deposition Rate
A*	A 2	-4.74	3.39	0.01	A 1	21.13	3.60	-5.36
в	B 2	-2.08	0.00	0.66	B 2	-2.08	0.00	0.66
С	C,	6.33	2.87	-1.31	C 1	6.33	2.87	-1.31
D	D 3	-4.68	-3.35	1.49	D_3	-4.68	-3.35	1.49
E*	<i>E</i> ₁	-6.16	0.00	0.00	E2	4.82	0.00	0.00
F*	F ₁	0.00	-4.48	0.00	F 2	0.00	2.15	0.00
Overall Mean		-45.36	31.52	34.12		-45.36	31.52	34.12
Total		- 56.69	29.95	34.97		-19.84	36.79	29.60

Indicates the factors whose levels are changed from the starting to the optimum conditions.
By contribution we mean the deviation from the overall mean caused by the particular factor level.

Lecture 9: Robust Design

EE290H F03

26

EE290H F03

Verification for large CVD experiment

		Starting Condition	Optimum Condition	Improvement
Surface Defects	rms	600/cm ²	7/cm ²	
Deletts	η	-55.6 dB	-16.9 dB	38.7 dB
Thickness	std. dev.*	0.028	0.013	
Inickness	η΄	31.1 dB	37.7 dB	6.6 dB
Deposition	rate	60 Å /min	35 Å /min	
Rate	η″	35.6 dBam	30.9 dBam	-4.7 dBam

* Standard deviation of thickness is expressed as a fraction of the mean thickness.

Spanos & Poolla

Why use S/N Ratios?

- They lead to an optimum through a monotonic function.
- They help improve additivity of the effects.

EE290H F03

Spanos & Poolla

EE290H F03

Taguchi vs. RSM

<u>Taguchi</u>

Small number of runs Engineering Intuition "Complete" package Additive Models Orthogonal Arrays A "Philosophy" <u>RSM</u> Explicit control of Interactions Statistical Intuition Training Issues More General Models Fractional Factorials A Tool

Design of Experiments

- Comparison of Treatments
- Blocking and Randomization Analysis
- Reference Distributions
- ANOVA
- MANOVA
- Factorial Designs
- Two Level Factorials
- Blocking
- Fractional Factorials
- Regression Analysis
- Robust Design

Lecture 9: Robust Design

29

Lecture 9: Robust Design

30

Modeling