
EE290S Lecture Note 1

Fall 2018

1 Administrative

1.1 Class Information

Instructors: Anant Sahai & Vidya Muthukumar
Office Hours: Immediately after lecture, Soda 306/Cory 258.
Course Communication: Primarily through Piazza.

1.2 Prerequisites

Prerequisites of the course are mastery of EE126 and knowledge of EE127 at the
level of CS189. These are necessary prerequisites because the course material
traditionally leans on much more advanced levels of probability and optimization
knowledge. This course will be trying to make the material accessible to those
who are meeting prerequisites. There may be struggles to do so — please provide
feedback along the way.

1.3 Grading & Assignments

The course is not curved.

40% — Team Project
20% — Midterm (Solo, potentially take-home)
15% — Team HW (roughly every two weeks)
25% — Participation

1.3.1 Project

The format of the project is flexible and expectations will depend on the type
of student — the work of a fourth year graduate student will be considered
differently than that of an undergraduate student. The most basic project
always available is a replication of an existing research paper. The final project
includes a brief presentations and poster.

A 50-60 hour workload per person is about the amount needed to pro-
duce a quality project. You are encouraged to work in groups — 3 people is
optimal, and more than 4 is not recommended.

1



Proposals for the project will be due sometime in October. There will be
suggestions for project topics, but hopefully by then you will have ideas growing
from your work throughout the course (making homework/demos) or talking to
instructors.

It is encouraged that you connect ideas from other courses. Your project
may be ”double dipped” with any other of your academic endeavors: other
research projects/agendas, other course projects (with the agreement of the
other professor/s), internship projects, and so on. Consult the instructors if
coordination with other faculty is needed.

1.3.2 Midterm

The midterm will likely be a take-home exam on/around October 20. The
window to take the exam would be short, so you would need to block out time
to do it.

1.3.3 Bi-weekly Homework

Homeworks can be done in groups and are expected to take 5-10 hours per
assignment. The release schedule for homework may be irregular.

1.3.4 Participation

While participation is only 25% of the grade, it can result in you failing the
course if minimum participation requirements are not met. Participa-
tion is composed of creating scribe notes of a lecture and making a homework
problem/demo, both of which will likely be done in groups.

Scribe notes will require about 15 hours of work per person. Beyond captur-
ing the material presented in lecture, you will have to expand upon the material
and incorporate information from other sources. It should be an open loop
process in which you will work closely with the instructors to make revisions.

Homework/Demo creation will also require about 15 hours of work per per-
son. You should create the homework/demo for the purpose of delving into
course material. Both Coding and/or math problems are okay. Coding must
be done using python and the homework must be formatted in latex. Detailed
solutions are required.

Grading will not be very fine-grained for participation — putting in an effort
to produce quality material will get you around an A-, but exceptional work can
get you a higher grade. The assignments mainly there for you to have face-time
with the instructors and also gain a deep understanding of at least one topic
from the course.

2 Course Overview

In this course, we will explore the challenges of sequential online decision making
in non-deterministic, possibly adversarial, environments. We will start with a

2



simple version of the problem and, as the course progresses, build our way up to
a high level of complexity while examining the new interactions and challenges
of our changing models.

2.1 Reinforcement learning

A reinforcement learning problem is the modeled by the following situation:

(time t)

(time t+1)

Action Environment

Environment

Reward

An agent is playing a game over T rounds in some environment. At some
round, an action is taken in a particular environment, or state. Based on the
state, the action gives the agent some reward and also may change the state of
the next round. The goal of the agent is to maximize cumulative reward over
all rounds.

With reinforcement learning, there are several unknowns in the problem
which make the problem difficult. We don’t know the following:

1. the reward: taking a specific action at some state gives some reward which
is not known beforehand.

2. the current environment, or state: we may not have full knowledge about
the state we are in.

3. the transition/state dynamics: how the environment, or state, changes
due to an action.

In order to maximize cumulative reward, we have to learn how actions
affect the state dynamics, because future states affect future rewards.

2.2 Contextual Learning

Contextual learning, also contextual bandits, is a simplification of reinforcement
learning, where taking an action does not affect state transition dynamics.

(time t) Action Environment Reward

An agent is playing a game over T rounds. For each action, dependent
on a given context and action taken, an unknown reward will be experienced.

3



Same as in reinforcement learning, the goal of the agent is to maximize their
cumulative reward over all rounds.

In contextual learning, there is complexity with having a large context —
you would need many rounds to learn the reward function. Because rounds are
limited, there is an estimation-approximation tradeoff. You have to bal-
ance overfitting to the information you are able to undercover in the few rounds
you experience versus having a simple model that has less power to represent a
complex underlying pattern.

2.3 Multi-Armed Bandit

The multi-armed bandit problem is a simplification of contextual learning —
the problem no longer depends on context, only the action.

(time t) Action Reward

An agent is playing a game over T rounds. Dependent on the action taken
in some round, an unknown reward corresponding to the action taken will be
experienced. The goal of the agent is still to maximize their cumulative reward
over all rounds.

In the multi-armed bandit problem, the main challenge is to balance ex-
ploiting versus exploring. In any round, there is only one action-reward pair
that is experienced — we miss out on information about the actions that are
not taken. There will always be the option of taking the best known action or
taking a unexplored action which may do better.

2.4 Prediction

Allowing for the rewards of all actions, taken or not, to be observed for each
round turns the multi-armed bandit problem into a prediction problem of the re-
ward process. Again, the goal is to maximize cumulative reward over all rounds.

(time t) Action Rewards of all actions

If the underlying process which determines the rewards is adversarial, the
challenge will be balancing learning from previous reward patterns versus de-
fending from the adversary.

4



2.5 Summary and Examples

By breaking down the problem we are able to highlight the added difficulties as
the complexity is increased.

Reinforcement Learning

Contextual Learning

Multi-Armed Bandit

Prediction

Exploring to learn state dynamics

Estimation-Approximation tradeoff

Exploration vs Exploitation

Learning vs Defense (when adversarial)

2.5.1 Prediction Example:

Imagine playing many rounds of rock-paper-scissors against an opponent.

(round t)
Action:

rock, paper, or scissors

Reward:
+1 if beat opponent,

0 if tie,
-1 if lost

At each turn, you experience only the reward of the action you took and
know the reward of all the other actions. To defend against your opponent,
you will want to be random enough that your opponent will not be able to guess
your next move. But you also want to learn from any patterns or imperfect
strategies of your adversary and capitalize on those.

2.5.2 Multi-Armed Bandit Example:

You are a doctor treating 100 patients with a specific disease. You have two
drugs to test: drug A and drug B. You must figure out which experimental drug
is most effective, while considering the health of each patients.

(patient t)
Action:

drug A or drug B
Reward:

patient t’s health

You cannot simply give 50 people drug A and 50 people drug B because what
if one drug were ineffective? Ideally, we would adaptively sample our drugs and
give very few patients the ineffective drug. In general, as you proceed with each

5



patient, you can use information from previous decisions and also learn more
about the drug you administer. So now suppose that drug A does better than
drug B for 3 of your first 5 patients. You have to choose between exploiting
drug A’s efficacy or exploring the possibility that drug B could be better.

2.5.3 Contextual Learning Example:

Consider the same situation as in the multi-armed bandit example. There is,
however, an added complication. Each drug interacts differently for each patient.

(patient t)
Action:
drug A

or drug B

Environment:
patient’s biology

Reward:
patient t’s

health

There are so many different combinations of biological factors that could
interact with the drugs differently — some factors will be more important than
others (this should remind you of feature selection). You only have a small
sample of those biological variations in your 100 patients so you must choose
a model which balances being able to make good estimations outside of your
sample with being able to approximate whatever information is present in a
sample.

2.5.4 Reinforcement Learning Example:

Consider the same situation as in the contextual learning example. Again, there
is an added complication. The virus can mutate in response to the drug.

(patient t)

(patient t+1)

Action:
drug A

or
drug B

Environment:
patient’s biology

and virus’
drug resistance

Reward:
patient t’s

health

Environment:
patient’s biology

and virus’
drug resistance

virus mutates

Now you have to also consider how your actions will affect the future. For
example, say that administering drug A when it does not work causes the virus
to become increasingly resistant to both drug A and drug B. You would need to
explore how the environment is changing in response to your actions
to discover this. And once you do, it would probably make you cautious of using
drug A even if it is effective for many people.

6



3 Machine Learning Highlights

In general, Machine Learning consists of feeding data into an algorithm and
extracting some kind of ”pattern” which should generalize to do well for unseen
data.

In the case of supervised learning, we are given labelled data (xi, yi), where
the xi are inputs and the yi are labels. The pattern learned from the data will
then predict labels ŷi given input xi.

We typically discuss two flavors of supervised learning: regression and clas-
sification.

• In a regression setting, the labels yi are continuous values. In regression,
we typically define correctness as closeness. ŷi is correct if it is ”close to”
yi, i.e. if for some ε : yi − ε ≤ ŷi ≤ yi + ε. An example of a regres-
sion problem would be predicting the market value of homes given their
characteristics, such as number of bedrooms, bathrooms, etc.

• In a classification setting, the labels are discrete values, and classification
is correct when the correct label is exactly chosen. An example of a
classification task would be determining whether a given picture contains
a cat in it or not.

In general, how do Machine Learning algorithms learn?

1. Split data into a training set Xtrain and a validation set Xval.

2. Use Xtrain to fit the parameters of a model, using some ”intelligent” op-
timization (such as least squares or gradient descent).

3. Use Xval to estimate generalization performance.

4. Repeat the above to set hyper-parameters in a way that maximizes gen-
eralization performance. This can be done in brute-force fashion.

This raises the question: what distinguishes parameters from hyper-parameters?

The difference is usually subtle. It boils down to what factors, if left as pa-
rameters to be optimized, lead to bad performance due to extreme overfitting.
For example, when trying to fit a polynomial onto a set of points from a distri-
bution, if the degree of the polynomial were a parameter, any set of N points
could always be perfectly fit with an N − 1 degree polynomial. However, this
would most likely not generalize as well as a lower degree polynomial to unseen
points from the distribution which the N points came from.

7


