
EE194/290S: ML for Sequential Decision Making Fall 2018

Lecture 13: Adaptation 3
Lecturer: Vidya Muthukumar Scribes: A Domingos, M Wiggert, S Mataraso

13.1 Adapting the Model Size

13.1.1 Prediction based on memory length

Consider some binary sequence with either 0 or 1 representing the value at a certain time-
point, for example: y1, y2, . . . , yn = (0, 1, 0, 1, 0, 1, 0, 1, . . .). Our current best performing
algorithm, AdaHedge, achieves a bounded regret (in comparison to one single action in
hindsight) of order

√
T , on this sequence. But we intuitively understand that after seeing

this alternating sequence many times we should be able to anticipate the alternating nature
of the sequence, and reduce or eliminate our losses. To do that we can define a memory-
dependent functions f , where f : yt−1 → yt and f : {0, 1} → {0, 1} ∈ F, where Ft−1 = {0, 1}
is the result at the last time step. For the next time step, Ft, we have the following potential
models to choose from:

Ft :



[
0→ 0
1→ 0

]
A

,

[
0→ 1
1→ 0

]
B[

0→ 0
1→ 1

]
C

,

[
0→ 1
1→ 1

]
D


In the context of the previously introduced sequence, the best function choice is the function
in row 1, column 2 (subscript B), which depending on the output for the last time step (t-1)
will predict the opposite for the current time step (t). This model would result in accurately
predicting the alternating sequence.

13.1.2 Prediction based on memory length D

For a fixed memory length D, we can build the model class f : yt−D, . . . , yt−1 → yt where
f : {0, 1}D → {0, 1} ∈ FD. The number of models in the function class FD increases dramat-
ically with D. For binary possible outcomes {0, 1} there are 2D different sequences/contexts
{0, 1}D. Because each model f maps each context to {0, 1}, there are 2#contexts possible
functions, meaning the size of the model class for memory length D is:

|FD| = 22D

A problem that comes with the exponentially growing size of the model class is overfitting
on sequences that are of low-length or no temporal structure e.g. Ber(0.7). This can be
observed on Figure 13.1. For the FTL algorithm it takes only very few rounds to determine
a clear leader (one or zero), from that point on-wards it collects all rewards and doesn’t
accumulate any more regret. However, for FTL(3) to determine a leader in each of it the
23 = 8 contexts which then leads to picking one model of the 223 = 256 possible models, it
needs to see all of those contexts at least a couple of times. We can see that this happens
after around 180 rounds, from which point on-wards the regret is constant. Until that point,
when it has learned to predict one in all contexts, it misses out on reward and consequently
accumulates less reward then FTL. From that point on-wards its reward curve is parallel to
the FTL curve. For higher memory-length models the point when it has found its leader in
all contexts happens exponentially later, as the number of contexts grows exponentially with

13-1

Lecture 13: Adaptation 3 13-2

memory length (e.g. FTL(4) around 500, FTL(5) around 1700), which explains the increasing
distance between the reward and regret curves. This is overfitting because although the
FTL(4) model works a lot better than FTL on past data (as it remembers all the contexts
and what the next number was) but this doesn’t generalize, so it makes mistakes on the new
data coming in.

Figure 13.1: A comparison of the accumulated reward on the left and the accumulated regret
(compared in hindsight to predictions {0}T or {1}T) on the right for different memory length
FTLs on an iid Ber(0.7) sequence. As the sequence is not memory dependent, the higher the
memory length of the model the longer it takes to learn the best model (always one) in all
of the exponentially increasing number of contexts and consequently the worse the rewards
during this learning time. Correspondingly, the accumulated regret is higher the higher the
memory length of the model.

13.2 Model Selection in Offline Learning

13.2.1 Empirical Risk Minimization

Let’s assume we have n data points Data : zi = (xi, yi) i = 1, ... n that are realizations of
the random variables X and Y , representing the covariates and their respective responses.
Further we assume that there exists a joint probability distribution P (x, y) and our n data
points are i.i.d. samples from that distribution (remark: we don’t have to believe that there
is something like a true distribution but still act as if there would be one).

We want to pick the best predictor function f : X → Y from a function class F (e.g.
polynomials up to degree d). Using the terminology of empirical risk minimization we can
define the risk associated with a specific function f ∈ F as L(f) = E[l(Y, f(X))] where
l(y, f(x)) is a loss function.

Take for example polynomial regression with y = fd(x) where fd ∈ Fd, Fd being all polyno-
mials of degree d. The best predictor function in this function class is the one that minimizes
the risk, f ∗(d) = arg minf∈Fd

L(f). We can’t calculate L(f) directly and therefore can’t get
f ∗(d). But we can empirically estimate it from our n iid data points:

f̂n = arg min
f∈Fd

1

n

n∑
i=1

l(yi, f(xi))

According to the law of large numbers f̂n ≈ f ∗(d) for n→∞. Consequently, we can assume
that L(f̂n) ≈ L(f ∗(d)). Indeed for polynomial regression we can establish a bound for the
expected estimation error E[f̂n − f ∗(d)] ≤ O(d

n
). If we want this error to be smaller than ε,

this means we need n >> n0(d) where n0 ∝ d
ε
.

How to choose d given n samples?
1) minimize the risk estimation error Eestimation = L(f̂n)−L(f ∗(d)) which decreases when d
decreases.

Lecture 13: Adaptation 3 13-3

2) minimize the risk approximation error Eapproximation = L(f ∗(d)) which decreases when d
increases.

In general terms we can bound the estimation error Eestimation = L(f̂n) − L(f ∗(d)) ≤ γd(n)
where γd(n) is some function of n that generally increases for d ↑ and n ↓.

13.2.2 Model Selecting Empirical Risk Minimization

Knowing the estimation approximation error trade-off we want to prevent overfitting which
happens when we have complex models and too few data points. Taking γd(n) as the
estimation error term which is dependent on n and the complexity of the function order(f),
we want to choose the model complexity appropriately to the number of datapoints n.

With f ∈ FD where D is the maximal model order and a measure of the model complexity
order(f) we can use the estimation error term γorder(f)(n) to explicitly penalize more complex
models.

f̂n = arg min
f∈FD

[1

n

n∑
i=1

l(yi, f(xi)) + γorder(f)(n)
]

The first term, an estimate for the approximation error, is bounded by the range of the loss
function. As γorder(f)(n) is decreasing as n increases this means that with higher n we’ll pick
more complex models.

13.3 Model Selection in Online Learning

13.3.1 Model Selecting FTL

Consider a formulation of follow the leader where the model has some memory of length D.
The loss function is defined at time t for some function f ∈ FD as:

Lt−1,f =
t−1∑
s=D

1[f(Ys−D, ...Ys−1) 6= Ys]

The best model to predict the next value in the sequence would be determined by the model
that minimizes our loss so far:

f̂(t) = arg min
f∈FD

Lt−1,f

However, it is clear that there is a major limitation to the model above, namely the model
order must be pre-specified. Follow the leader can be modified in order to select not just the
best model of a given order but the best model regardless of order.

If we use the minimize the loss function and remove the restriction of model order, thus
allowing models of any order, the chosen model will be overfit. This is because the mini-
mization problem always has a solution with minimum 0 by setting the model equal to order
t− 1 and selecting the model that matches the realized values in the sequence.

The current loss term, Lt−1,f refers to the fit of the model to the observed data points.
In terms of the approximation-estimation error trade off, minimizing this term will give a
very low approximation error and high estimation error. In order to avoid the problem of
overfitting, we can add a term to the optimization problem that represents estimation error
and is some function of the order of the class of functions we are considering. By modifying
the optimization problem to include this term, we penalize higher order models.

We can optimize over a class of models Fd that contains all models in the set {F0,F1, ...FD}.
Including the above change, our new optimization problem becomes:

f̂(t) = arg min
f∈Fd

(Lt−1,f + ln[order(FD)])

Lecture 13: Adaptation 3 13-4

where FD represents the class to which the chosen model from Fd belongs. In the follow the
leader regime, the order of the model class for a model with memory D is 22D , and so our
optimization problem becomes

f̂(t) = arg min
f∈Fd

(Lt−1,f + ln(2) ∗ 2D)

We call this regime model selecting follow the leader.

13.3.2 Reward & Regret in Model Selecting FTL

Let’s consider a concept of reward for model selecting FTL, defined as:

T∑
t=D

1[f(Yt−D, ...Yt−1) == Yt]

Specifically, let’s look at reward for FTL with different order models for a 2-periodic se-
quence:

Figure 13.2: Total reward for different FTL model complexities.

We can see that FTL does not perform very well, which is expected. We only accurately
predict one of the four values in the sequence, and half the time we correctly guess the next
value when the sequence has an equal number of ones and zeroes. We see an even worse
performance for one-memory FTL, which is effectively tricked by the 2-repeating nature of
the sequence. However, we see two-, three-, and four-memory FTL do well, because they can
capture the full complexity of the model. However, we want a way to penalize the increased
complexity of the three- and four-memory FTL model over the two-complexity FTL model.
To do so, we modify our definition of regret to include a penalty for more complex models:

T∑
t=D

1[f(Yt−D, ...Yt−1) == Yt]− ln(2) ∗ 2D

where D is the order of the model. Looking at the first 200 rounds with this penalized
reward, we see the following:

The three- and four-memory models never achieve the same reward as the two-memory FTL
because they have a greater penalty and the predictions from all three are always correct,

Lecture 13: Adaptation 3 13-5

Figure 13.3: Total reward for different FTL model complexities with a penalty for increasing
model complexity.

Figure 13.4: Total reward for different FTL model complexities on a 5 periodic sequence. On
the left without a penalty and on the right with a penalty for increasing model complexity.

giving the same value of the loss function. Let us consider a more complicated sequence, a
5-periodic sequence.

We can see that only the five-memory FTL algorithm is able to achieve maximum reward.
When we add in our penalty, we see similar results, as expected.

The five-memory model originally has less cumulative reward than the other models due to
the penalty, but as we collect more data, we see the five-memory FTL model exceeding the
performance of the other models. Indeed, whenever the data are generated from a higher
order model, more data is necessary to overcome to penalty term down-weighting the use
of higher order models. This is similar to the effect that a large amount of data has in
overpowering the down-weighting effect of a prior in offline learning, if a prior is used to
penalize high complexity models.

Another example is shown in Figure 13.5, where the sequence is stochastic but the parameter
of the Bernoulli random variable for the next value in the sequence is determined by the four
prior values in the sequence. As expected, we see the reward is maximized for a four-memory
FTL model, which can capture the full dependency of the model.

Whenever dealing with the concept of regret, it is important to define a baseline that makes
sense in the context of the problem. The maximum order of a model must be appropriately
selected. Otherwise, the reference set of models will be too large, resulting in an overfit
baseline that isn’t realistic to achieve in an online fashion. Without the appropriate selection

Lecture 13: Adaptation 3 13-6

Figure 13.5: Total reward for different FTL model complexities with a penalty for increasing
model complexity.

of a baseline, the concept of regret is meaningless for comparison.

13.3.3 Model Selecting Exponential Weights

We can extend the ideas used in model selecting FTL to exponential weights. Recall in the
original formulation of exponential weights one modifies the weight at time step t as:

wt = e−ηtLt−1

In the model selecting version of exponential weights, it is necessary to add a term that
penalizes the use of a higher order model:

wt,f = e−ηtLt−1,f ∗ 2−2
order(f)

The 2−2
order(f)

term acts as a prior down weighting the probability of selecting a higher order
model. However, it is important to note that as t increases, the effect of the prior is washed
out by the increasing value of the loss, Lt−1,f , if an incorrect model is chosen, including one
that is of too small of an order. In other words, the increase in penalty for selecting a higher
order model is smaller than the decrease in the total loss when the amount of data is large.

13.3.4 Connection to Offline Learning

Clearly, model selection is an important problem in predictive modeling. Without carefully
considering the model and its complexity, one is in danger of overfitting the predictive model
to the data and building a model which does not generalize. As such, a lot of work has been
done in the area of offline model selection. One approach for for offline model selection is
minimizing the Akaike Information Criterion (AIC) [1]:

AIC = 2k − 2ln(L̂)

where k represents the number of parameters in the model and L̂ is the maximum value of
the likelihood function. This model selection criteria bears a similarity to our formulation
of empirical risk minimization. Specifically, minimizing AIC balances the trade-off between
the penalty for a more complex model and picking a model that is more accurate on seen
data. It is important to note that thus far we have been using the simple example of binary
sequence prediction and using loss functions. AIC is different in that it requires maximizing
the likelihood instead of minimizing the loss; however, the trade-off between a better model
and a more complex model remains a key part of the criterion, as in online model selection.

To demonstrate the similar regularizing effect of AIC, consider polynomial regression on
a small dataset of X = {0, 1, 2, 3, 4, 5} and Yi = Xi+N,N ∼ N (0,0.2). Fitting a polynomial

Lecture 13: Adaptation 3 13-7

of unconstrained order would result in a 5th degree polynomial to perfectly fits all the data
points, or more generally an n− 1 degree polynomial for n data points. The unconstrained
model would look something like Figure 13.6. This model maximizes the likelihood of the
data. However, the regularizing effect of the 2k term in AIC will prevent overfitting by

Figure 13.6: Polynomial fit with no complexity penalty term, it picks k=5 a 5th order
polynomial.

selecting a model class which is more appropriate. With a linear class of models, the maxi-
mum likelihood of the data is less than with a 5th degree polynomial, but still fairly good.
However, the reduced complexity (and consequently, reduced model parameters k, meaning
reduced complexity penalty) leads the AIC criterion to favor a linear model, with a much
more generalizeable fit, visualized below in Fig 13.7. Generally, for a more complex model to

Figure 13.7: Polynomial fit with k=1 complexity penalty term.

be favorable under AIC, the additional complexity must increase the likelihood of the data
more than the additional penalty for the added complexity. This is exactly what we observe
in the online setting. To pick a more complex model, the additional complexity must result
in a great enough decrease in the loss function to overcome the penalty.

Lecture 13: Adaptation 3 13-8

13.3.5 Other Considerations in Online Model Selection

As we have seen, many of the regimes we have discussed, such as FTL and exponential
weights, can be modified for online model selection by not constraining the model to a
certain order. However, it is important to modify the optimization problem or put a prior
down-weighting complex models. If this is not done, the resulting models are likely to be
overfitting. As with traditional statistical machine learning, the relative importance of the
regularizer or prior can be adjusted if information is known about the likely order of the
model.

References

[1] Akaike H. Likelihood of a model and information criteria. Journal of economet-
rics. 1981;16(1):3-14.

