
Scribe Notes: Adaptation 4 – 10-05-18

Nikhil Shinde, Nipun Ramakrishnan

October 5, 2018

1 Motivation

In the previous lectures we looked at predicting sequences using algorithms like
FTL, Hedge and AdaHedge. The goal in all these cases was to produce an
algorithm that incurs the least amount of regret, which is to say it does well
against some established set of baselines or reference classes. While evaluating
these algorithms we found that they seemed to incur higher losses on a particular
sequence:

Y = (0, 1, 0, 1, . . . , 0, 1)n

that we considered adversarial. Yet by just viewing this sequence we can see a
pattern indicating that it should in fact be easy to predict.

It was this thought that motivated us to expand our baseline or reference
classes to explore better and more expressive models. Using higher order models
made predicting previously ”hard” sequences much easier. In the specific case of
Y = (0, 1, 0, 1, . . . , 0, 1)n, using models of order 1: {[0 → 0, 1 → 1], [0 → 1, 1 →
1], [0 → 1, 1 → 0], [0 → 0, 1 → 1]}. Since this set contained [0 → 1, 1 → 0] we
could precisely predict our sequence.

Yet this concept of expanding our set of reference classes with model order
poses a new question: Which models and model orders should we consider?

2 Model order selection

2.1 Intuition

When considering models of different orders we have an inherent tension be-
tween approximation error and estimation error: A more complex model has
the ability to fit to any noise in the sequence, decreasing approximation error
by lowering the loss seen but increasing estimation error as the noise is not a
key part of the pattern in the observed sequence. Meanwhile, a lower order
model that is closer to the ”true order” of the sequence seen would have a lower
estimation error but may have a higher approximation error, due to its inability
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to fit to the data.

In the next section we will explore how to address this problem in an online
manner by changing the best model order as we view more data in the sequence.

2.2 A race

Let us start by considering follow the leader (FTL) type approaches. To gain
an intuitive understanding of this topic we will analyze this as a race between
different orders of models. Picture this by imagining different predictive models
lined up at some starting line. As they predict the sequence over time they
accumulate reward for the terms that they predicted right. In terms of online
prediction we want to bet on the model order that is in the lead or has accu-
mulated the highest reward.

Figure 1: Start of the race

As this race continues along a certain sequence, one model order will appear
in the lead and continue to stay forward. We can use this idea of a race to
evaluate different model orders for FTL.

Figure 2: End of the race where D = 3 wins
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Let us first consider what it means to have FTL of order or depth D. In
classical FTL of order 0 we simply looked at the sequence seen so far and voted
with a majority. With depth D FTL we consider all possible D length sequences
(of which there are 2D). Each of these depth D sequence can predict a 1 or a
0, and each permutation of these sequences 2D predicting either a 1 or a 0 is

one of the depth D models. Thus a model order of depth D ends up having 22
D

potential models. When doing online prediction we consider each of these 22
D

models and predict using the model that we have seen the most.

Knowing this we can see that when considering a class of higher order pre-
dictors they will clearly have a false advantage. Since there are exponentially
more of them there is a higher probability that they will get lucky, essentially
overfitting to any noise in the sequence, and predict correctly. In other words,
these models will end up looking better than they actually are. This gives classes
of a higher order an inherent advantage in the model order race. To continue
analysis of the race between model orders we must calculate this propensity to
overfit and how much regret we will to incur due to this. In order to offset this
effect we calculate a penalty as a function of model order, to in effect ”event
out” the race. Before further analyzing the penalty function and regret let us
take an aside to better understand this concept of overfitting.

Figure 3: Start of race incorporating penalties

2.3 Aside: Understanding overfitting as a scam

You have come up with a great way to scam people out of money. You start
by picking some stock and sending letters to n = 10000 people. To the first n

2
people you send the following letter:

”You don’t know me, but the this particular stock price will go up”

To the remaining n
2 you send a similar letter indicating instead that the stock

price will go down. Since the stock price will change one way or the other one
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of the two messages will be accurate. On the second day, we evenly divide the
group of people to whom we sent the correct prediction and tell one half:

”See I was right! The stock will go up again.”

We send a similar message the other half the same thing but that the stock
went down. In a similar manner to before, our prediction will hold true for half
the people. We continue this pattern for several days and as a result we will
have constantly given correct predictions to n

2days people. Having established
credibility we now ask them for money for future predictions! The more people
we send letters to, the more people we get all the predictions correct for by
construction. Thus the people that trust in us do so purely out of dumb luck!
This is akin to what we see when we increase the model order. We get more
predictions correct purely due to the reason that we have more models that can
capture random variability in the data.

3 Overfitting in Trees

We’ve seen that the penalty function for higher order models with model orders
of D is on the order of 2D. Why is this the correct choice? To gain some
intuition on this, let’s analyze the potential for overfitting in tree-like models
that represent our prediction problem. In a general sequence {0, 1}N , a depth D
tree predictor in an online setting will look at the previous D bits to determine
the next bit. We will show that such a model has an O(2D) overfit potential in
ther worst case.

One worst case scenario that’s particularly nice to analyze is the Bernoulli( 1
2 ).

Notice that in this case, the true model is completely random, so all depth D
models will overfit. We will define this capacity of overfit as a worst case count
over time of how many predictions these higher order models got correct just
by dumb luck of how the sequence realized itself.

Assuming we have a T length sequence where T is much larger than 2D(implying
we have seen many more contexts than possible models of depth D), we can ap-
proximate the situation as a balls and bins problem in which each node in the
tree represents a bin and each context of the sequence represents a ball. We
know from the study of the behavior of balls and bins that as the number of
balls becomes large, the distribution of balls in each bin approaches the uniform
distribution.

With 2D bins, each bin gets T
2D

realizations. Each bin has a count of the
respective 1’s and 0’s, one of which is the leader for that context. The leading 0

or 1 will be ahead O(1+
√

T
2D

). This incorporates the fact that each realization

has seen the context at least once and takes into the account the standard
deviation of the realizations. Consequently, each of the 2D bins have O(1 +√

T
2D

) of regret, as they think that either 1 or 0 is ahead by O(1 +
√

T
2D

) even
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though it is completely random. Thus we can bound the total regret by

O(2D(1 +

√
T

2D
)) = O(2D + 2

D
2

√
T )

We can interpret this bound as the first 2D term representing the first time
a context has been seen and the next term incorporating the variance of the
contexts in this randomized sequence. Overall, this analysis shows that we have
at least O(2D) regret in the worst case, so we have to penalize higher order
models enough to overcome the possibility of getting contexts correct by dumb
luck.

4 Regret Analysis in the Race Context

Let’s now revisit the race perspective that we introduced earlier. Assuming the
data comes from a true model of order d, we want to understand how much
regret we accumulate relative to the best dth order model. We also would like
to understand the evolution of how our model orders change as we progress
through the algorithm. Recall, that our algorithm for model selection makes a
decision according to the following optimization problem:

argmax
m

Reward(m, (x1, x2, . . . xT ))− Penalty(m)

where m is the model order.

Figure 4: Speed of model orders during race

To understand how to analyze regret in the context of the race, let us first
understand how the race will evolve over time: The simplest will win for a
while, then more complicated models will overtake it until the model with the
true order d comes out ahead and stays in the lead (This can have some shaking
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due to random rewards and losses caused by fitting to noise).
In this context regret can be conceptualized as the amount of time it takes for
the best model order to overtake the rest. To make this easy to understand let
us consider just two model orders:0 and 1 racing against one another. Consider
the graphic above for this example where model order 0 is moving at speed α0

and model order 1 is moving at speed α1 where α1 > α0. We define speed to
be the reward gained by a model at each time step. With these speeds it takes
the best runner: order 1:

penalty(1)− penalty(0)

α1 − α0

time to overtake. Since we know the speed we know that we incur αi reward for
model order i at each time step making our regret in this case: α1 − α0. Our
total regret is:

(α1 − α0) ∗ penalty(1)− penalty(0)

α1 − α0
= penalty(1)− penalty(0)

. Thus total regret is exactly the difference between the penalties! Using this
we can guarantee low regret assuming our sequence is stochastic.

4.1 Model selection in an Adversarial context

We can also consider model order selection under adversarial scenarios. In such
a case we combine the perspective taken above and combine it with the entropy
regularization. This gives us a new algorithm:

softmaxm[Reward(m, (x1, x2, . . . xT ))− 1

η
∗ (Penalty(m)−H(ω))]

This serves to protect against adversarial sequences by introducing random-
ization via H(ω) or entropy. The 1

η serves as the learning rate as we have seen
before. Here we use the same budget as elegant adahedge to set the learning
rate. The more regret we incur we drop the learning rate. However when we
drop the learning rate we end up applying a bigger model order penalty making
it take more time for the true model to take a lead in the race. Due to this we
incur a larger regret though it can show it is only off by a constant multiple
making it the same O(2D)

Another consideration when penalizing model orders when using exponential
weights is to penalize by using priors. You effectively use priors to downweight
model orders that are less likely to be seen.

5 Computational points

When it comes to implementation there is a computational note to be addressed.

As it was shown previously, there are 22
D

models of order D to consider when
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running this algorithm. To keep track of all these models makes it computa-
tionally unfeasible to consider many model orders.
To solve this we implement the algorithm only using the O(2D) contexts where
D is the highest model order considered. Since there are only 2D unique se-
quences for model order D, when running online prediction we only have to
keep track of how many times we saw a 1 or a 0 after the occurrence of that
sequence, then the next time we see the same sequence we can just predict a 1
or 0 based on which of the two has a higher count for the observed context. This
drastically reduces the amount of information we have to store as we can simply
store information for contexts rather than for every individual model itself.
To implement this we can construct a binary tree where models of order d are
represented by the dth layer in the tree. The root node keeps track of the 0s
and 1s that have been seen for model order zero and each node has a ’0’ child
and a ’1’ child that denotes the sequence that is seen before predicting with the
contexts stored in that node. When operating in an online fashion, every time
we see a new entry in the sequence we we take the latest length d sequence and
go down the tree updating the counts for the contexts stored in each node with
the next item that has been seen. Similarly to predict we traverse down the
latest length d sequence and choose a 1 or a 0, whichever has a higher count in
that context. This drastically reduces our runtime per prediction to O(D) and
changes our memory complexity to O(2D)

Figure 5: Tree example at depth d = 2
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