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1 Preliminaries

T := total number of timesteps for which we are pulling an arm
Xi,t := reward for pulling arm i on round t.
Ti(t) := number of times arm i is pulled before round t

The two-armed stochastic bandit is given by:
(X1,1, X1,2 . . . X1,T ) i.i.d. ∼ Ber(µ1),
(X1,1, X12, 1 . . . XT,1) i.i.d. ∼ Ber(µ2)

∆ := µbest − µworse is the gap between the two arms

The goal is to minimize ”pseudo-regret” given by:

RT := Tµ∗ −
T∑
t=1

E[µIt ] = ∆ E[T2(T )]

where
∑T

t=1 E[µIt ] is the expected total reward our strategy achieves and Tµ∗ is the best
expected total reward in hindsight, achieved by picking the best arm at each time step.

2 Elegant UCB Recap

Without loss of generality, assume that arm 1 is better than arm 2, so we can write
∆ = µ1 − µ2. The goal is to minimize pseudo-regret (defined above), which is a mea-
sure of how our performance compares to how well we could have done if we knew µ1 and
µ2 beforehand.

Elegant UCB admits one parameter, δt ∼ t−α, which controls how large we want our con-
fidence intervals to be. A larger confidence interval signifies that we expect the ”truth” to
be within a larger margin of error around the sample mean; therefore, a larger confidence
interval is less precise.
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(a) Confidence Interval (b) UCB would choose µ1 in this example

Figure 1

More formally: Pr[µ̂2[µlow, µhigh]] ≥ 1− δt

The action (which arm to pull) is selected according to the following rule:

It = arg max
i∈{1,2}

[
µ̂i(t) +

√
8 ln(1/δt)

Ti(t− 1)

]

Recall that Elegant UCB gives the following regret guarantee:

RT ≤
2 · 8 ln(1/δt)

∆2
+

T∑
t=1

δt

3 Explore-then-exploit

The Algorithm for Explore-then-exploit is as follows:

1. Explore arm 1 in odd rounds and arm 2 in even rounds (for T0 rounds each)

2. Always pick the best arm: i ∈ arg max µ̂i(T0)

Recall that T2(T ) is the number of times that the inferior arm 2 is selected. If arm 1 comes
out ahead after the first phase of the algorithm, arm 2 will never be selected again after the
first 2T0 steps. However, if arm 2 wins, it will be chosen for the rest of the time. We can
thus express this quantity as:

T2(T ) =

{
T0 if µ̂1(T0) ≥ µ̂2(T0)

T − T0 if µ̂1(T0) < µ̂2(T0)
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Taking expectations, we have:

E[T2(T )] = Pr[µ̂1(T0) ≥ µ̂2(T0)](T0) + Pr[µ̂1(T0) < µ̂2(T0)](T − T0)

= (1− Pr[µ̂1(T0) < µ̂2(T0)])(T0) + Pr[µ̂1(T0) < µ̂2(T0)](T − T0)

= T0 + Pr[µ̂1(T0) < µ̂2(T0)](T − 2T0)

The event µ̂1(T0) < µ̂2(T0) occurs only if one of the following events occurs:

1. µ̂1(T0) < µ1 − ∆
2

2. µ̂2(T0) > µ2 + ∆
2

We can upper bound the probability of the first arm performing worse than the second arm
in the first 2T0 steps by applying the union bound as follows:

Pr[µ̂1(T0) < µ̂2(T0)] ≤ Pr[µ̂1(T0) < µ1 −
∆

2
] + Pr[µ̂2(T0) > µ2 +

∆

2
]

≤ 2e−
∆2T0

8

where the final inequality comes from the Hoeffding bound. Putting everything together
gives us an upper bound on the expected number of times we pull the second arm:

E[T2(T )] = T0 + Pr[µ̂1(T0) < µ̂2(T0)](T − 2T0)

≤ T0 + 2e−
∆2T0

8 (T − 2T0)

Finally, we can plug in the definition of pseudo-regret:

RT = ∆ E[T2(T )]

≤ ∆T0 + 2∆e−
∆2T0

8 (T − 2T0)

In this expression, we can interpret the first term as the price of ”exploration” and the second
as the price of ”exploitation.” To see this more concretely, let’s take a look at what happens
for a couple different values of T0.

Setting T0 = C, a constant, corresponds to only exploring for a fixed number of time steps
per arm regardless of the time horizon T . Intuitively, we expect our cost of exploration to
be significantly lower than our cost of exploitation. Indeed, when we make the appropriate
substitutions, we obtain the following expression for pseudo-regret:

C∆ + 2∆e−
∆2C

8 (T − 2C) = O(T )

The ”exploration” part of the cost, C∆, turns into a constant while the ”exploitation” part
grows linearly in T . This is bad; in fact, asymptotically, this is just as bad as picking the
worst arm every time.

Now, let’s consider the opposite situation: T0 = αT for some fixed α > 0. Here, we let
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the number of ”exploration” steps grow linearly in the time horizon. After making the
substitution, we have

∆(αT ) + 2∆e−
∆2αT

8 (T − 2αT ) = O(T )

The ”exploration” part of the cost, α∆T , is now linear in T while the ”exploitation” part is

negligible in comparison; the e−
∆2αT

8 term amounts to dividing by an exponential in T , so it
dominates the linear term it multiplies. Again, the pseudo-regret is linear in T .

Instead, ”explore-then-exploit” selects T0 to minimize pseudo-regret. We want to select
a T0 that grows asymptotically faster than a constant, but is also o(T a) for all a > 0. It

turns out that the optimal value is T0 = c ln(T )
∆2 . Plugging this in, we get

c ln(T )

∆
+ 2∆e−

c ln(T )
8 (T − c ln(T )

∆2
)

≤c ln(T )

∆
+ 2∆T−

c
8 · T

=
c ln(T )

∆
+ 2∆T 1− c

8

Setting c = 8, for instance, makes the second term constant and gives a pseudo-regret
guarantee of O(lnT ) – much better than O(T )!

4 Lower Bound

Goal: Prove that there does not exist any approach that uses � lnT samples of worse arm
regardless of (µ1, µ2

Definitions: E is a class of stochastic environments of (µ1, µ2 where (µ1 ∈ [0, 1], µ2 ∈ [0, 1]
this covers all stochastic 2-armed bandits.

A is a class of updates such that for every instance (µ1, µ2 ∈ E : E[Tworse(T )] = o(T a)∀a > 0
i.e. ”very sublinear”

Lower bound (informal): For any env. ∈ E, any update A ∈ A will pay

Rt >≈
c∆ lnT

DKL(µworse||µbest

0 < p, q < 1 : DKL = p ln
p

q
+ (1− p) ln

1− p
1− q

≥ 1

2
(p− q)2

DKL(p||q) 6= DKL(q||p)

We do care about knowing the distributions of p and q; this lower bound does not hold when
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(a) Optimal T0 = O(log T )

we don’t know the distribution, and in any case DKL is asymmetric.

We’re in universe A but could be in universe B, we don’t know yet. If we sample a limited
number of times then the confidence intervals for µ2A, µ2B will overlap.

Say Z1, Z2 · · ·Zn iid Ber(q) so q is ”true” distribution of our data, but if we inspect false
environment by looking at sample mean 1

n
Σn
i=1Zi = p 6= q we want to bound our probability

of getting ”tricked”.
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(a) o(T a scales less than other common big-O

Pr
q

[
1

n
Σn
i=1Zi = np] =

(
n

np

)
qnp(1− q)n(1−p)

=

(
n

np

)
enp ln q+n(1−p) ln(1−q)

enH(p)

2π
√
n
<

(
n

np

)
=

n!

np!(n− np)!
< enH(p)

= e−np ln p−n(1−p) ln(1−p)+np ln q+np(1−p) ln(1−q)

= e−nDkl(p||q)

Using Stirling’s approximation to upper bound the binomial coefficient in the probability
mass function of the Bernoulli random variable by the entropy of the data.

So, say we’re in Universe B, the probability that we confuse ourselves by not sampling
enough is lower-bounded by e−nDKL(p||q) therefore we do need this minimum number of sam-
ples, which is not insignificant.
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The specification of the Bernoulli distribution characterizing the reward of our arms is not
important, what’s important is that any time we have a finite number of samples we will have
a blur around being able to pin down the parameter which characterizes the distribution of
the reward of our arms.

7


