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1 Review of Thompson Sampling

We have a prior on the best action A∗. Recall that in Thompson Sampling, we
draw the action at according to P (A∗|A1, Y1, A2, Y2....At−1, Yt−1). The regret

is defined as E[Regret(T )] = E
∑T

t=1R(Yt,A∗)−R(Yt,At)

2 Linearly Parameterized Bandits

Consider a setting where the rewards observed (Y) are given by

Y = aT θ∗ +N (0, 1)

a is the action taken, and we have a ∈ A , where A is a set of points in Rd

θ∗ is d dimensional, and we assume it has a prior N (µ0,Σ0)

Algorithm 1 Linearly Parametrized Bandits

1: Initialize µ = µ0 , Σ = Σ0

2: for iteration t ∈ {1, . . . , T} do
3: Draw θt ∼ N (µ, Σ)
4: Compute at = argmaxa∈A a

T θt
5: Plug at to obtain Yt
6: Set µ = E[θ|Yt] , Σ = E[(θ − µ)(θ − µ)T |Yt]
7: end for

The above algorithm can be used to approximate θ∗. Note that since Y and θ
are jointly Gaussian random variables (by definition), E[θ|Yt] = L[θ|Yt]. where

L[θ|Yt] = E[X] + cov(X,Yt)
var(Yt)

(Yt − E[Yt])
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3 Towards a Regret Bound for T.S.

Continuing from last lecture, we wish to bound the expected regret of Thompson
Sampling in the case where the information ratio (Γ) is bounded. We can write
the expected regret as follows:

E[Regret(T )] = E
[∑T

t=1 Et [R(Yt,A∗)−R(Yt,At)]
]

(1)

Where A∗ is defined as the optimal bandit/arm and At is the Thompson Sam-
pled Action. Here Et denotes an expectation conditioned on all past information,
i.e. the sequence ((A0, Y0,A0

), (A1, Y1,A1
), ..., (At−1, Yt−1,At−1

)).
Now recall from last lecture that we defined the information ratio (Γ) as such:

Γt =
(Et[R(Yt,A∗ )−R(Yt,At )])

2

It(A∗;(At,Yt,At ))
(2)

Where Γt is the information ratio at time t and It(A
∗; (At, Yt,At

)) is the mutual
information between the optimal action A∗ and the joint distribution of the
Thompson sampled action and its corresponding observation. Recall from last
lecture that the information ratio measures how much the incremental regret
squared changes with the information gained on the optimal action by choosing
the particular arm. Essentially we normalize the regret of Thompson sampling
by what you learned which quantifies the tradeoff between learning and paying
a regret cost. If you will learn a lot relative to your regret, your information
ratio will be low, and conversely if you learn little from the action, while paying
a lot of regret, your information ratio will be high. We will bound the regret by
using an upper bound on this quantity.

Given the above definitions, we make the following claim about the expected
regret of Thompson Sampling:

If the information ratio at time t has an upper bound, that is to say if we
have Γt ≤ Γ, then we have the following bound on the expected regret:

E[Regret(T )] ≤
√
T ∗ Γ ∗ H(A∗) (3)

Here H(A∗) is the entropy of the optimal action.
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Proof :

E[Regret(T )] = E

[
T∑

t=1

E [R(Yt,A∗)−R(Yt,At
)| ((A0, Y0,A0

), (A1, Y1,A1
), ..., (At−1, Yt−1,At−1

))]

]

= E
T∑

t=1

√
Γt ∗ It(A∗; (At, Yt,At

))

≤
√

ΓE
T∑

t=1

√
It(A∗; (At, Yt,At

))

≤
√

Γ
√
T E

T∑
t=1

√
It(A∗; (At, Yt,At))

≤
√
T ∗ Γ ∗ H(A∗)

We expand the expectation of regret using the law of iterated expectation,
where we condition on past observations and actions in the inner expectation.
From the first line to the second, we use the definition of Γt to substitute√

Γt ∗ It(A∗; (At, Yt,At
)) for Et[R(Yt,A∗) − R(Yt,At

)]. From the second to the
third line, simply plug in the bound Γt ≤ Γ. For the next two lines in the proof,
we will introduce two definitions that will prove to be quite useful:

Cauchy Schwartz Inequality for Random Vectors X,Y:

E[XTY ] ≤
√
E[XTX]E[Y TY ] (4)

Mutual Information for Random Variables X,Y :

I(X,Y ) = H(X)−H(X|Y ) (5)

To go from the third line to the fourth line in the proof, we will utilize the
Cauchy Schwartz inequality defined above where we define X to be the ran-
dom vector such that Xt =

√
It(A∗; (At, Yt,At

)) and Y to be the random vec-
tor of all ones. Then using the Cauchy Schwartz inequality, we E[XTX] =∑T

t=1 It(A
∗; (At, Yt,At)) and E[Y TY ] =

∑T
t=1 1 = T . Using these, we obtain the

fourth line of the proof.
Now we can decompose the mutual information It(A

∗; (At, Yt,At
)) using the def-

inition of Mutual Information as H(A∗)−H(A∗|A1, Y1,A1
) +H(A∗|A1, Y1,A1

)−
H(A∗|A2, Y2,A2

) + ... = H(A∗)−H(A∗|At−1, ...) ≤ H(A∗). From here, the last
line of the proof follows.
As you can see, if we can bound our information ratio, we can obtain a regret
bound that is sublinear in T.
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4 Regret Bound for Full Information Feedback
Case (Prediction)

Now that we have a general bound for the expected regret, we will derive the
bound on the information ratio (step 5 from the previous lecture) as follows:

Proof :

Et[R(Yt,A∗)−R(Yt,At)] =
∑
a

Pt[A
∗ = a](E[R(Yt,A∗)|A∗ = a])− E[R(Yt,At)]

≤
∑
a

Pt[A
∗ = a]

√
2 ∗ DKL(Pt(Y |A∗ = a)||Pt(Y ))

≤
√

2
∑
a

Pt[A∗ = a] ∗ DKL(Pt(Y |A∗ = a)||Pt(Y ))

≤
√
It(A∗;Y )

=⇒ Γt ≤
2It(A

∗;Y )

It(A∗; (Yt,At
, At)

We obtain the first line through the law of iterated expectations. Then using
the bound on E[R(Yt,A∗)|A∗ = a])−E[R(Yt,At

) that we derived last lecture, the
next line follows. Now recall the following inequality:
Jensen’s Inequality:

if a function f is convex, then f(E[X]) ≤ E(f(X))

Using this inequality, and taking f to be the square root function, which is
concave, line 3 follows from line 2 of the proof.
To obtain the final line of the proof, we use the fact that the mutual information
between two random variables is given by the following expression:

I(X,Y ) =
∑

x P[X = x]DKL(P[Y |X] || P[Y ])

Using this equality, if we choose X to be A∗ and Y as Y, then we obtain the last
line of the proof.
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