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In Contextual Bandits, our regret is relative to a class Π of policies. A policy is a function that
takes in the context x and maps it to an action a:1 π(x) 7→ a. We would like to do as well in
hindsight as we would have done if we had known which policy to use and had seen everything.

22.1 Approach

Recall that in past lectures we developed algorithms for the Experts problem, where at each round
we had full information about how each expert performed regardless of whether we had selected
them or not. The leading algorithm in this setting is Multiplicative Weights, which we showed had
O(
√
T ) regret.

We are now concerned with the Bandits problem in which feedback is limited: we only get to
know the losses or rewards of the expert that we had selected. A central question of this lecture is
can we can still do as well only given partial information? In a previous lecture, we saw that we
could reduce the Bandits to the Experts problem by using a blocking trick, which segmented time
into separate intervals of exploration and exploitation. When we randomized when these phases
occurred and ran Multiplicative Weights, we found it was possible to achieve a regret bound of
O(

3
√
T 2).

In this lecture, we want to recover the O(
√
T ) bound for the Bandits problem. The key idea is that

we don’t have allocate separate intervals to exploration and exploitation, nor do we have to mix
in some amount of uniform exploration. Instead, it turns out that Multiplicative Weights, when
given a small modification in the partial feedback setting, will have sufficient inherent exploration
to give us the desired O(

√
T ) bound.

22.1.1 EXP3

Let’s first consider the non-stochastic, adversarial multi-arm bandit environment without policies
and contexts. How do we choose the learning rate and associated parameters (if there are any)?
And how does our regret scale with respect to

• T , the time horizon, and

• |A| = N , the number of different actions?

Recall the scenario where we had semi-sparse random explore times, and played the multiplicative
weights algorithms to exploit outside of those times. What if we don’t look at what happens during

1A policy can also map to a distribution over all arms, as we will see in EXP4. In that case, π(x) 7→ a.
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exploit times? This was multiplicative weights with ε-exploration, and we got a regret that scales
sub-linearly, O(T 2/3). So what if we actually use the information we get during exploit times?

Instead of using the actual cumulative loss vectors Lt(a) =
∑t

i=1 li(a), which we don’t have, we

will use the estimated cumulative loss L̂t(a) =
∑t

i=1 l̂i(a). What is l̂i(a)? We would like that in

expectation for l̂i to be an unbiased estimator of lt, that is E[l̂i(a)] = li(a). As a consequence of
using l̂i, by linearity of expectation, L̂t(a) will also be an unbiased estimator of Lt(a).

This can be achieved by the following strategy of “the grass is greener on the other side”,

l̂i(a) =

{
1
p li(a) if Ai = a (observed the actual loss)

0 otherwise

where p is the probability of choosing a at time step i. Let’s verify that l̂i is indeed an unbiased
estimator.

E[l̂i(a)] = E
[

Pr(Ai = a)
li(a)

Pr(Ai = a)
+ (1− Pr(Ai = a)) · 0

]
= li(a)

Intuitively, without 1/p scalar, our estimated loss would only be estimate for p× li, the probability
of seeing the actual loss times the actual loss itself. We divide li(a) by the probability of choosing
that action so that we can maintain our expectation property.

Beyond being unbiased, why is l̂i a good estimator to use? l̂i has the additional property that it
is highly optimistic for arms that have not been pulled yet, and hence it is likely to explore those
arms. Note that by setting the loss equal to 0, we are effectively maintaining the weight between
rounds for that arm:

wt+1(a) = wt(a) exp(η · 0)︸ ︷︷ ︸
1

= wt(a)

When we combine the ideas laid out above, the result is an “Exponential-weight algorithm for
Exploration and Exploitation” (EXP3)2.

Note that a similar algorithm can be derived for rewards by advantaging arms that have yielded a
better return r, via

wt+1(a) = wt(a) exp(+ηr̂t(a)/N)

22.1.2 EXP4

Let’s now turn to the non-stochastic, adversarial multi-arm bandit environment with policies and
contexts. How do we choose the learning rate and associated parameters (if there are any)? And
how does our regret scale with respect to

• T , the time horizon,

2The original paper for the algorithm by Auer et al. is linked in the references section.
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Algorithm 1: EXP3 for losses

1 function EXP3 (η)

2 initialize w0(a) = 1 for a = 1, . . . , N

3 for t = 1 to T do

4 set Wt =
∑N

a=1wt(a), and set for a = 1, . . . , N

Pr(At = a) = (1− η)
wt(a)

Wt
+ η

1

N

5 draw At randomly accordingly to the probabilities Pr(At = a)

6 receive loss lt(a) ∈ [0, 1]

7 set for a = 1, . . . , N

l̂t(a) =


lt(a)/Pr(At = a) if At = a

0 otherwise

wt+1(a) = wt(a) exp(−ηl̂t(a)/N)

8 end
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• |A| = N , the number of different actions, and

• |Π|, the number of policies?

We could approach the problem using the multi-armed bandits framework that we constructed
above, treating each policy like an arm. The problem here is, regret will scale with respect to the
number of policies. Because policies are functions of context, there can be a huge number of them
— and this will cause regret to scale very badly!

To avoid this combinatorial explosion, we will instead focus on the space of possible actions when
it comes selecting arms. In general, we can assume N << |Π| and that in each round, multiple
policies when given contexts will map to a same action. However, we still maintain a weight for each
policy wt(π) ∝ exp(−ηL̂t−1(π)) where π includes the contexts we have seen and η is the learning
rate. Note that for updating the weights, we now use losses associated with policies, not actions.
These losses are given by

Lt(π) =
t∑
i=1

li(π(xi))

li(π(xi)) = li(a)

Again, as with EXP3, we will be substituting in estimated loss vectors l̂t(π) for lt(π).

One unresolved question is, what is the probability of pulling an arm given policies and contexts?
The probability of any arm a at time t is equal to sum of probabilities of all policies which would
have chosen a as its action at time t.

The result is an “Exponential-weight algorithm for Exploration and Exploitation using Expert3

advice” (EXP4). In this algorithm, during each round, each policy generates an advice vector which
is a distribution over all arms and indicates that policy’s recommended probability of playing an
action a at time t. Note that the context xt does not appear in the algorithm since it is only used
by the policy to generate advice.

Note that a similar algorithm can be derived for rewards by advantaging arms that have yielded a
better return r, via

wt+1(a) = wt(a) exp(+ηr̂t(a)/N)

3In the literature, the term ‘experts’ are often used interchangably with ‘policies’
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Algorithm 2: EXP4 for losses

1 function EXP4 (η)

2 initialize w0(π) = 1 for π = 1, . . . ,K

3 for t = 1 to T do

4 get advice vectors ξ1
t , . . . , ξ

K
t

5 set Wt =
K∑
π=1

wt(π), and set for a = 1, . . . , N

Pr(At = a) = (1− η)

K∑
π=1

wt(π)ξπt (a)

Wt
+ η

1

N

6 draw At randomly accordingly to the probabilities Pr(At = a)

7 receive loss lt(a) ∈ [0, 1]

8 set for a = 1, . . . , N

l̂t(a) =


lt(a)/Pr(At = a) if At = a

0 otherwise

9 set for π = 1, . . . ,K

ŷt(π) = ξπt · l̂t

wt+1(π) = wt(π) exp(−ηŷt(π)/N)

10 end
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22.2 Regret Analysis

We know from previous lectures that using Multiplicative Weights as a blackbox algorithm achieves
sublinear regret relative to the loss vectors it is given. In the case of adversarial bandits, we would
just be feeding in the estimated loss vectors l̂i. However, does the analysis from before still hold
true when given these new loss vectors?

The answer unfortunately turns out to be no. Recall that in those proofs, the original losses li were
bounded between 0 and 1. In the limited feedback setting, the same cannot be said for l̂i because
we are scaling the observed losses by 1/p to recover the expectation property mentioned earlier.
Here, lt/p is a random variable with an increased range and potentially high variance. As a result
of l̂i being unbounded, we will need to redo the proof to show that our algorithm is still sublinear.

As we will see, instead of relying on a bound on the original losses, we will invoke a second moment-
type bound4 on lt/p.

22.2.1 EXP3

Theorem 22.1

E
[
RegretT (EXP3)

]
≤ 1

η
lnN + ηTN

Here, the regret and expected regret are defined as

RT =
T∑
t=1

l̂t(at)−min
a∈A

T∑
t=1

lt(a) and E[RT ] =
T∑
t=1

wt · l̂t −min
a∈A

T∑
t=1

lt(a).

Proof. See below.

As with our regret analysis of Hedge, we want to express it in terms of mixed loss. For time step
t, this is defined as

Φt =
1

η
ln(

N∑
a=1

exp(−ηLt(a))

The difference then across all rounds is

4In the original paper for EXP3 and EXP4 by Auer et al., the authors added a uniform-exploration component
to lower-bound p. In effect, this also upper-bounds lt/p. While this helps with the actualized performance of the
algorithms, it was found later that this uniform part was unnecessary in the analysis of expected regret.
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ΦT − Φ0 =

T∑
t=1

Φt − Φt−1

=

T∑
t=1

1

η
ln
(∑N

a=1 exp(−ηLt−1(a)− ηlt(a))∑N
a=1 exp(−ηLt−1(a)

)
=

T∑
t=1

1

η
ln
( N∑
a=1

wt(a) exp(−ηlt(a))
)

How can we simplify this?

Lemma 22.2 For all x ≥ 0,

e−x ≤ 1− x+
1

2
x2

Figure 22.1: visual proof of Lemma 22.1

Proof. Just show that e−x− 1 +x− 1
2x

2 has a maximum at x = 0 and is decreasing using the first
and second derivative tests.
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Lemma 22.3 For all x,
ln(1 + x) ≤ x

Proof. Same method as for proving the previous lemma.

Figure 22.2: visual proof of Lemma 22.2

Using these two lemmas, we can derive an upper bound on the cumulative mixed loss.

ΦT − Φ0 =

T∑
t=1

1

η
ln
( N∑
a=1

wt(a) exp(−ηlt(a))
)

≤
T∑
t=1

1

η
ln
( N∑
a=1

wt(a)
[
1− ηlt(a) +

1

2
η2lt(a)2

])
Lemma 22.1

≤
T∑
t=1

1

η
ln
([

1− η
N∑
a=1

wt(a)lt(a) +
1

2
η2

N∑
a=1

wt(a)lt(a)2
])

≤
T∑
t=1

1

η

[
− η

N∑
a=1

wt(a)lt(a) +
1

2
η2

N∑
a=1

wt(a)lt(a)2
]

Lemma 22.2

≤
T∑
t=1

[
−wt · lt + η

N∑
a=1

wt(a)lt(a)2
]

How can we use mixed loss to upper bound the regret we defined earlier? By a small slight of hand,

Φ0 =
1

η
ln(

N∑
a=1

1) =
1

η
lnN
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we can rewrite the formula above:

ΦT−Φ0 ≤ −
T∑
t=1

wt · lt + η
T∑
t=1

N∑
a=1

wt(a)lt(a)2

ΦT−
1

η
lnN ≤

ΦT+
T∑
t=1

wt · lt ≤ 1

η
lnN + η

T∑
t=1

N∑
a=1

wt(a)lt(a)2

The additional step is to substitute ΦT for −LT (a). The inequality trivially holds true for all values
of a since ΦT and LT (a) are both ≥ 0.

T∑
t=1

wt · lt + ΦT ≤ lnN

η
+ η

t∑
t=1

N∑
a=1

wt(a)lt(a)2

T∑
t=1

wt · lt − LT (a) ≤

Using this bound on the original losses, we can obtain a bound on the estimated losses and on the
expected regret

E
[ T∑
t=1

wt · l̂t −min
a
LT (a)

]
≤ lnN

η
+ η

T∑
t=1

N∑
a=1

E
[
wt(a) · l̂t(a)2

]
≤ lnN

η
+ η

T∑
t=1

N∑
a=1

E
[
wt(a)

]
· 1

Pr(a)
li(a)2

≤ lnN

η
+ η

T∑
t=1

N∑
a=1

li(a)2

≤ lnN

η
+ η

T∑
t=1

N∑
a=1

1

≤ lnN

η
+ ηTN

To jump from the first to the fourth equation, we used the facts that

• E
[
l̂t(a)2

]
= 1

Pr(At=a) lt(a)2, which got us the 2nd equation,

• E
[
wt(a)

]
= Pr(a), which got us the 3rd equation, and

• li(a) ∈ [0, 1] =⇒ li(a)2 ∈ [0, 1], which got us the 4th equation.

And that concludes our proof.
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Theorem 22.4
E
[
RegretT (EXP3)

]
≤
√

2TN lnN

Proof. Set

η =

√
lnN

TN

and evaluate the bound above.

This is a better regret scaling than when we had used multiplicative weights and ignored the losses
incurred during exploration, which had regret O(

3
√
T 2).

The key difference between the EXP3 algorithm and multiplicative weights with ε-exploration is
that EXP3 does not drop observations in any round, as opposed to multiplicative weights which
drops observations with probability 1− ε.

22.2.2 EXP4

What if we take policies and contexts into account?

Theorem 22.5

E
[
RegretT (EXP4)

]
≤ 1

η
ln |Π|+ ηTN

Here, the regret and expected regret are defined as

RT =

T∑
t=1

l̂t(at)−min
π∈Π

T∑
t=1

ξπt · l̂t and E[RT ] =

T∑
t=1

wt · l̂t −min
π∈Π

T∑
t=1

ξπt · l̂t
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Proof. From the regret bound for EXP3, we have

E
[ T∑
t=1

wt · l̂t −min
π∈Π

T∑
t=1

ξπt · l̂t
]
≤ 1

η
ln |Π|+ η

T∑
t=1

E
[ K∑
π=1

wt(π) · l̂t(π(xt))
2
]

≤ 1

η
ln |Π|+ η

T∑
t=1

N∑
a=1

∑
π:π(xt)=a

E
[
wt(π) · l̂t(π(xt))

2
]

≤ 1

η
ln |Π|+ η

T∑
t=1

N∑
a=1

∑
π:π(xt)=a

E
[
wt(π) · l̂t(a)2

]

≤ 1

η
ln |Π|+ η

T∑
t=1

N∑
a=1

E
[
wt(a) · l̂t(a)2

]
≤ 1

η
ln |Π|+ η

T∑
t=1

N∑
a=1

E
[
wt(a)

]
· 1

Pr(a)
lt(a)2

≤ 1

η
ln |Π|+ η

T∑
t=1

N∑
a=1

lt(a)2

≤ 1

η
ln |Π|+ η

T∑
t=1

N∑
a=1

1

≤ 1

η
ln |Π|+ ηTN

To jump from the first to the third equation, we used the facts that

• E
[∑K

π=1wt(π) · l̂t(π(xt))
2
]

=
∑

π:π(xt)=a
E
[
wt(π) · l̂t(π(xt))

2
]
, which is just rewriting loss in

terms of actions instead of policies, and

• E
[
wt(π) · l̂t(π(xt))

2
]

= E
[
wt(π) · l̂t(a)2

]
, which is equivalent since π(xt) = a.

And that concludes our proof.

Theorem 22.6
E
[
RegretT (EXP4)

]
≤
√

2TN ln |Π|

Proof. Set

η =

√
ln |Π|
TN

and evaluate the bound above.
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22.3 Recap

algorithm setting regret bound

multiplicative weights experts with full feedback O( 2
√
T )

ε-multiplicative weights experts with limited feedback O(
3
√
T 2)

EXP3 non-stochastic, adversarial bandits O( 2
√
TN logN)

EXP4 non-stochastic, adversarial bandits with contexts O( 2
√
TN logK)
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