
EE 194 Lecture 3: Review Lecture 3

Hilary Huang, Mesut Yang, Ryan Cheng

September 2018

1 Regularization

Recall that classic machine learning is about interpolation. Given data points
(xi, yi) , our goal is to find ŷ for xtest by fitting a function to the data we have.

1.1 Model order

In order to prevent overfitting, we need to put constraints on our model to
regularize it. One way is to control the number of parameters used in the model,
or ”model order”. For example, consider fitting a polynomial to a bunch of data
points. The higher the order of the polynomial is, the better the polynomial is
able to fit the points. However, this makes the model prone to consider noise
as data, and thus have a high variance.

1.2 Prior

A second way of regularization is to enforce a prior on our data distribution.
Consider the following:

y = wx+N

w ∼ N (µ, σ2)

N ∼ N (0, 1)

And we do the Maximum a posteriori estimation (MAP) for w:

arg max
w

f(w|~x, ~y) = arg max
w

f(w) · f(~x, ~y|w)

f(~x, ~y)

= arg max
w

f(w) · f(~x, ~y|w)

Substituting in a gaussian prior gives:

f(w|~x, ~y) =
1√

2πσ2
e

−(w−µ)2

2σ2 ·
n∏
i=1

1√
2π
e−

(yi−w·xi)
2

2

1

Taking negative log converts argmax to argmin:

arg max
w

f(w|~x, ~y) = arg min
w

− log f(w|~x, ~y)

= arg min
w

− log(
1√

2πσ2
e

−(w−µ)2

2σ2 ·
n∏
i=1

1√
2π
e−

(yi−w·xi)
2

2)

= arg min
w

− log(
1√

2πσ2
) +

(w − µ)2

2σ2
−

n∑
i=1

log(e−
(yi−w·xi)

2

2)− log(
1√
2π

)

= arg min
w

(w − µ)2

2σ2
+

1

2

n∑
i

(yi − wxi)2

Therefore,

ŵ = arg min
w

(w − µ)2

2σ2
+

1

2

n∑
i

(yi − wxi)2

We see the second term is just normal squared error but the first term comes
from the Gaussian prior.
Take derivative and solve, we get:

ŵ =

∑n
i=1 xiyi + µ

σ2∑n
i=1 x

2
i + 1

σ2

We can take a closer look at the role of σ2, the variance of our prior, in the
optimal ŵ:

• σ → 0: This corresponds to extreme confidence in the prior. In this case,
the terms with σ as denominator (µσ2 and 1

σ2) completely dominate the
terms containing actual data (

∑n
i=1 xiyi and

∑n
i=1 x

2
i). Therefore, the

optimal ŵ would just be µ,the mean of prior

• σ → ∞: This is opposite to the previous case, and corresponds to no
confidence in our prior. Here, all the term containing σ vanishes, and we
end up with an optimal guess as if we have no prior.

Recall that Yi = WtrueXi +Ni. When we substitute in yi, we can think of ŵ as
a random variable because Ni ∼ N (0, 1).

ŵ =
µ
σ2 +

∑n
i=1 x

2
iWtrue∑n

i=1 x
2
i + 1

σ2

+

∑n
i=1 xiNi∑n

i=1 x
2
i + 1

σ2

= wtrue +
µ− wtrue

σ2
∑n
i=1 x

2
i + 1

+

∑n
i=1 xiNi∑n

i=1 x
2
i + 1

σ2

= wtrue + approximation error + estimation error

2

The first term is fixed and represents the approximation error, whereas the sec-
ond term varies with N and represents the estimation error.

Priors are like penalty functions in optimization, but we can also consider
them as fake data points Xfake, Yfake. Verify that having a prior is similar to

adding an extra data point, (1
σ2

µ
σ2) to the original ŵ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.

2 How can we optimize?

2.1 Brute Force

1. Try all possibilities (if discrete)

2. Try all possibilities on a grid1.

2

3. Try all possibilities from a random set3

2.2 Analytic Solution (With the help of vector calculus)

Special case: Convex Problem
For points ~x1 and ~x2 in a convex set A,

λ ~x1 + (1− λ) ~x2 ∈ A
∀λ ∈ [0, 1]

1Ke Li and Jitendra Malik. Fast k-Nearest Neighbour Search via Prioritized DCI. In
Proceedings of the 34th International Conference on Machine Learning, pages 2081–2090,
2017.

2CS189 SP18 HW13
3James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization.

Journal of Machine Learning Research 13 (2012), pages 281-305

3

4

Convex and concave functions have nice properties: it is easy to find mini-
mum/maximum of them

2.3 Gradient Descent

The main idea is to move the weight w closer to its optimum value over time.

1. w0 is initialized to be a random vector in Rd, where d is the dimensionality
of the parameter vector w.

2. For t = 1, 2, 3. . . :

wt+1 = wt − η∇f(wt)

3. if sufficient progress is not made, terminate and return wt. Otherwise,
repeat step 2

A few Notes on Gradient Descent :

• η is the step size or learning rate. It controls the amount we move in each
iteration.

4http://www.gtmath.com/2016/03/convexity-and-jensens-inequality.html

4

– η too big: w will oscillate and diverge

– η too small: the algorithm will take too long to converge

Sometimes, we may decrease / step size to ensure w converge∇f(wt)

• If the problem is convex, we are guaranteed to find global minimum if we
choose step size appropriately

• The gradient, ∇f(wt) is the direction of the steepest ascent. This is easily
seen in 2D, and can be proved by using the Taylor Expansion Theorem
on f in higher dimensions.

• f(wt + tu) = f(wt) + (tu)T∇f(wt) = f(wt) + t(uT∇f(wt))

• Recall that < u,∇f(wt) >= |u||∇f(wt)|cos(ψ). This expression is max-
imized when ψ = 0. Which means that u is collinear with the gradient.
And u maximizes the expression.

2.4 Coordinate Descent and line search

Coordinate Descent and line search look for sparse solutions, but what are their
advantages? In the context of primal problems, if the weight vector ~w is sparse,
we can discard features with 0 weight after training, since they will have no
effect on the regression values of test data. A similar reasoning applies to dual
problems with dual weight vector ~v, allowing us to discard the training points
corresponding to dual weight 0, ultimately allowing for faster evaluation of our
hypothesis function on test points.5

The general procedure of Coordinate Decent follows:

1. Pick a direction ~d

5CS189 SP18 Note 24

5

2. Optimize f(~wi + η~d) as a function of η

3. Move to ~wt+1 = ~wt + η∗ ~d

Ideally, we want to find an algorithm that solves the Sparse Lest Square
objective

min
w
||Xw − y||22
s.t.||w||0 ≤ k

But l0 norm (the number of non-zero elements) does not actually satisfy the
properties of a norm, so solving this optimization problem is NP-Hard. But by
a relaxed version, where l0 is replaced with l1, can be solved. This is what we
called LASSO (least absolute shrinkage and selection operator).

The objective of LASSO:

min
w
||Xw − y||22
s.t.||w||1 ≤ k

Due to strong duality, we can express the LASSO objective in unconstrained
form

min
w
||Xw − y||22 + λ||w||1

LASSO works well with coordinate descent
The ”pointiness” of L1 norm encourages sparsity seeking: It applies a constant
pull towards 0 on each dim unless enough force from data

2.5 Matching pursuit (Gradient Boosting)

Rather than relaxing the l0 constraint (as seen in LASSO), the matching
pursuit algorithm keeps the constraint, and instead finds an approximate
solution to the spare least squares problem in a greedy fashion. Therefore, it
might be easier to view Matching Pursuit as “greedy coordinate descent”
A general procedure of Matching Pursuit Algorithm follows:

6

1. The algorithm starts with with a completely sparse solution (~w0 = ~0)

2. At each step, pick “the direction”, which must be axis aligned, that
maximizes inner product with gradient of loss. In mathematical
language, at each time step t, the algorithm can only update one entry of
~wt−1

3. ~w will be iteratively updated until the sparsity constraint ||~w||0 ≤ k can
no longer be met.

From the process, we can see that the resulting ~w is guaranteed to be sparse
(it will contain at most k non-zero entries). This is closely related to the idea
of early stopping

2.6 Stochastic Gradient descent and Mini-batch Gradient
Descent

Why might it be sensible to compute gradient with fewer sample?
We can approximate the gradient with a stochastic estimate of the gradient.6

∇f(wt) ≈ ∇fS(wt) ≡
1

S

S∑
i

∇fi(wt)

Story setting 1
Professor visits colleagues in new city. After din-
ner, she needs to get to hotel, but her phone battery
is dead. Every few blocks, asks for directions from
students, but students have been partying, so when
they point to her hotel, she gets only a noisy esti-
mate of the direction. a

aAnalogy courtesy of David Bleiat Columbia

Now back to the algorithm. Assume that f can be expressed in the form∑n
i=1[1n ∗ fi(w)].

• SGD

6CS 189 SP18 SGD lecture slides

7

1. w0 is initialized to be a random vector in Rd, where d is the dimen-
sionality of the parameter vector w.

2. For t = 1, 2, 3. . . :

wt+1 = wt − η∇fi(wt)

where i is an index sampled uniformly from 1,2,3. . . n

3. if sufficient progress is not made, terminate and return wt. Otherwise,
repeat step 2

• Mini-batch
Similar to SGD, but pick a random subset of sub-samples and use the
average of gradients on examples in the subset.

The Idea behind SGD /minibatch :

• The time complexity for computing the gradient is linear in n, the number
of gradients

• When n is large, it might be really slow. In order to speed up the com-
puting process, can we randomly sub-sample the training set and still get
similar convergence behavior.

8

