
EE194/290S: ML for Sequential Decision under Uncertainty Fall 2018

Lecture 4: Multiplicative Weights I

Lecturer: Anant Sahai, Vidya Muthukumar Scribes: Brian Hung, Michael X. Xu

In this lecture, we will introduce the difficulties of making predictions in unknown online environ-
ments. To that end, we explain why randomization plays an important role in such environments,
provide a formal definition of the term ”regret” in the setting of sequential prediction problems,
and finally introduce the multiplicative weights algorithm.

4.1 Sequential Decisions

We start off first with a familiar problem: prediction. In the previous lectures, we reviewed classical
machine learning methods and focused mainly on prediction problems where a dataset is provided
to us in advance.

However, we will now explore the case where we don’t get the entire dataset all at once, but instead
we receive some data points one by one each round1; and in between these rounds, we choose to
rely on the previously revealed information as input and make predictions. This variant, where we
make best guesses of a sequence unknown to us, is called a sequential prediction problem:

1. Label arrives one piece at a time.

2. We make a prediction of the next label based on preceding labels.

In the context of classical ML, we can choose to formalize the ”dataset” after the t-th round as
Dt = {(xi, x̂i)}ti=0, where xi denotes the label received at time i, and x̂i denotes our prediction to
the i-th signal.2

4.1.1 Warmup: Prediction with Bernoulli Variables

Here, let us start with a warm up illustration using the Bernoulli distribution for simplification.3

Suppose we observe the i.i.d Bernoulli draws X1, X2, . . . , Xt, . . . in a stream, where we have Xt ∈
{0, 1} and P [Xt = 1] = p ∈ [0, 1]. At each time instance t, having observed X1, X2, ..., Xt−1, we
are tasked with making the t-th prediction.

To formalize our goal of prediction:

min
T∑
t=1

`HAMMING(Xt, X̂t)

where Xt
i.i.d∼ Bernoulli(p)

X̂t = fpredict(X1, X2,, Xt−1) = fpredict(X
(t−1))

Here we incur the zero-one Hamming loss in the objective function:

`HAMMING(Xt, X̂t) =

{
0 if Xt = X̂t

1 if Xt 6= X̂t

Before moving on and talking about how to find an optimal f which minimizes the loss function,
we’ll make an additional assumption that, as in most sequential prediction problems, this Bernoulli
variable p will be unknown to us.

Note that if p is known to us, it is trivial to construct our universal prediction function f to be:

1As we will see later, these types of problems are solved or approximated via an online algorithm.
2In future lectures, we will explore the case of online supervised learning, where we receive both an input xt and

a label yt.
3Remember that in most real online environments, one do not have a probabilistic model of the input sequence

before hand.

4-1

Lecture 4: Multiplicative Weights I 4-2

f∗predict(X
(t)
(1)) =

{
0 if p < 0.5

1 if p ≥ 0.5
(1)

(In the case p = 0.5, we break ties in favor of 1.

4.2 Randomization

Now suppose we do not have prior information on the value of p, how can we approach picking f?

A direct intuition would be using the Maximum Likelihood Estimation (MLE) to estimate p and
then rely on rule (1) for prediction. As it turns out, this would lead to picking the majority vote
from the sequence (i.e., selecting the class that yields the least loss over all past rounds). This
strategy in sequential prediction is called follow-the-leader (FTL), and in this case we could write
our prediction function as:

f∗predict(X
(t−1)
(1)) = I{X̄(t−1)

(1) ≥ 0.5} (2)

where X̄
(t−1)
(1) is the running average of X1, X2, . . . , Xt−1, that is,

X̄
(t−1)
(1) :=

1

t− 1

t−1∑
i=1

Xi.

Here we break ties by choosing X̂t = 1 when X̄
(t−1)
(1) = 0.5.

When the data is stochastic (i.e. the losses are independent and identically distributed), FTL is
the natural approach to online prediction, and it works well. This is the setting familiar to us in
statistical learning. Formally, for almost all sequences (under the probabilistic model), the average
number of mistakes is (asymptotically) no more than the smallest between the proportion of zeros
and proportion of ones in the sequence. We now show that this probability of deviation decays
exponentially in proportion to T . Without loss of generality, assume the sequence is iid Bernoulli
with p ≥ 0.5. Then, we have

Pr(FTL is wrong at time t) = Pr(x̄
(t)
(1) < 0.5) (3)

= Pr(
t∑
i=0

xi − tp < 0.5− tp)

≤ e−λ(p−0.5)tE[eλX(p−0.5)t] for some λ > 0

≤ e−
(p−0.5)2t

8 ,

where the first inequality applies the Chernoff bound4 and the second inequality applies Hoeffding’s
inequality on bounded random variables5, then minimizes the bound over λ > 0.

As a more concrete example, let p = 0.70. The probability of FTL making a “wrong” prediction
equals the shaded area6.

4https://en.wikipedia.org/wiki/Chernoff_bound#Example.
5This was proved in HW 1!
6A further visualization in your browser: https://www.desmos.com/calculator/ecaqw5mz9i.

Lecture 4: Multiplicative Weights I 4-3

One problem that arises with FTL is that it breaks down badly when the sequence is antagonistic,
that is generated by an adversarial environment. Considering the following example:

t 0 1 2 3 · · · T − 1 T

xt 0 1 0 1 · · · 0 1
x̂t 1 0 1 0 · · · 1 0

On this example, FTL will predict 0 in odd rounds and 1 in even rounds (by the tie-breaking rule).
Thus, it incurs loss 1 in every round. The total loss incurred is

∑T
t=1 `HAMMING(Xt, X̂t) = T .

It turns out this catastrophic loss is not limited to only FTL, but more generally to any strategy
which is deterministic.

Lemma 4.1 For any deterministic prediction strategy {φt : {0, 1}t → {0, 1}}T−1
t=0 , there exists

an adversarially generated input sequence {xt}Tt=1 such that the Hamming loss incurred by the
prediction strategy is linear in T .

Proof: By definition, the deterministic strategy will predict x̂t = φt(x1, . . . , xt−1) for all t =
1, . . . , T . The adversary will then choose the sequence {xt = 1− x̂t}Tt=1. This gives us

sumT
t=1`HAMMING(xt, φt(x1, . . . , xt−1)) =

T∑
t=1

I{x̂t 6= xt} = T.

A question then arises, How can we find a strategy that does better than loss of T? Here’s a naive
approach: We avoid deterministic play by flipping an unbiased (private) coin each round and base
our prediction X̂t on that. That is, X̂t is Bernoulli with probability 1/2. The expected loss is then

E[

T∑
t=1

`HAMMING(xt, X̂t)] =

T∑
t=1

E[`HAMMING(xt, X̂t)] =

T∑
t=1

E[1{xt 6= X̂t}] =
1

2
T .

Observe that this strategy of pure guessing will incur loss T/2 regardless of the value of the true
sequence X1, . . . , XT . This is an attractive property because we have completely removed our
dependence of the loss on the adversary!

Pure guessing works well on examples like the sequence of alternating 0’s and 1’s (on which FTL
performed poorly) – but is unsatisfactory on more predictable sequences where we would ideally
like to exploit the predictable pattern. As an extreme example, let’s pretend that the environment
produces the sequence xt = 0 for all t = 1, . . . , T . A sample prediction X̂1, . . . , X̂T of the pure
guessing strategy is given below:

t 0 1 2 3 · · · T − 1 T

xt 0 0 0 0 · · · 0 0
x̂t 0 1 1 0 · · · 0 1

E[
∑T

t=1 `HAMMING(xt, x̂t)] =
∑T

t=1 E[I{xt 6= x̂t}] = 1
2T .

Lecture 4: Multiplicative Weights I 4-4

In hindsight, an algorithm like FTL, that would have incurred a total loss of 0, would have been a
much better choice!

The key is that our environment is unknown: it may be unpredictable, but it also may be
friendly/stochastic. We want an algorithm that minimizes the worst-case loss we could have en-
countered, where this worst case is itself a function of the approach we choose. We can formalize
this below:

min
X̂1

max
X1

min
X̂2

max
X2

. . .min
X̂T

max
XT

T∑
t=1

`HAMMING(Xt, X̂t).

We cannot expect to get every single prediction right in a worst-case and online environment. We
next look at reasonable benchmarks for what we can hope to achieve, based on what we could have
done in hindsight.

4.3 Regret

In words, regret can best be described as what you wished you would’ve done in hindsight. The key
phrase here is ”in hindsight”: we compare a candidate sequential/online learning approach with
the best approach we might have taken in hindsight had we seen the entire sequence at once.

Definition (Regret) Fix the loss vectors `(X1, ·), . . . , `(XT , ·). The regret of a sequence of
predictions X̂1, X̂2, . . . , X̂T is:

R(T) =
T∑
t=1

`(Xt, X̂t)︸ ︷︷ ︸
our algorithm

− min
X?∈{0,1}

T∑
t=1

`(Xi, X
?)︸ ︷︷ ︸

best fixed prediction

.

To formalize the definition of ”regret”, we require a benchmark, a reference class of predictors X
as the sequence of actions our strategy could’ve taken in hindsight.

Note that our benchmark (for now) is the set of constant predictors, i.e. predicting X? = 1 or
X? = 0 in every round. We’ll discuss more ambitious benchmarks in later lectures.

Note that X̂t, the prediction made at round t, is a random quantity as it depends on the randomness
in our algorithm. This also implies that the regret R(T) is also a random variable. So in general,
we will talk about the expected regret E[R(T)].

Recall in a stochastic environment, FTL converge exponentially to the optimum strategy, and
therefore incurred a constant regret. Formally, when Xt i.i.d Ber(p), FTL will only disagree with
the best action in X for a constant number of times in the beginning and thus achieve an expected
regret of constant:

E[R(T)] =

T∑
t=1

E[`(xt, x̂t)]− min
x?∈X

E[

T∑
t=1

`(xt, x
?)]

= min
x?∈X

T∑
t=1

E[`(xt, x̂t)− `(xt, x?)]

∼ O(1)

For the example that we described as adversarial to FTL, i.e. the sequence of alternating 0’s and
1’s, the regret incurred by FTL is

R(T) =
T∑
t=1

`(xt, x̂t)− min
x?∈X

T∑
t=1

`(xi, x
?)

= T − 1

2
T =

1

2
T

With regret, the adversary can still force us to incur a loss of O(T), but not without negatively
affecting the performance of the best constant predictor as well.

We saw previously that randomization was a viable strategy against an adversary. What is the
expected regret of a pure guessing strategy? Intuitively, if our adversary knows that our strategy

Lecture 4: Multiplicative Weights I 4-5

is random, say: x̂t ∼ Ber(1
2), they would just fix the sequence to be constant, as in the example of

all 0’s. Now, our expected regret is

E[R(T)] =
T∑
t=1

E[`(xt, x̂t)]− min
x?∈X

E[
T∑
t=1

`(xi, x
?)]

=
1

2
T − 0 =

1

2
T

Thus, we are interested in the following natural question: Is there a way to combine the strategies
of pure randomization and follow-the-leader to achieve a lower, worst-case regret?

In the next section, we will briefly introduce an algorithm that incurs a worst-case regret of O(
√
T).

In the next lecture, we will prove this.

Lecture 4: Multiplicative Weights I 4-6

4.4 Multiplicative Weights Algorithm

Intuitively, instead of making a hard prediction (predicting either 0 or 1) each round, why not make
a soft prediction (choosing 0 with probability p and 1 with 1− p)?

We can do this by initially assigning an equal ”weight” to each class, decreasing or increasing it
proportionately when we see a new label. To then convert these weights into probabilities, we can
use the familiar softmax function:

pt,0 =
wt,0

wt,0 + wt,1
, pt,1 =

wt,0
wt,0

+ wt,1.

The softmax function has the following property: exp(α1x) + exp(α2x) ≈ exp(max(α1, α2)).

Here is the multiplicative weights (MW) algorithm:

Algorithm 1: Multiplicative Weights

1 function MW (a, b);
Input : stream of labels
Output: sequence of predictions

2 initialize wt,0 = wt,1 = 1
3 initialize Lt,0 = Lt,1 = 0
4 for each time step t = 2, . . . , T do

5

Lt−1,j =
t−1∑
i=1

I[Xi 6= j] = Lt−2,j + I[Xt−1 6= j] j ∈ {0, 1}

wt,j = exp(−ηLt−1,j) = w
(t−1)
j · exp(−ηI(xt−1 6= j))

6 predict X̂t = 0 with probability
wt,0

wt,0 + wt,1
, X̂t = 1 with probability

wt,1
wt,0 + wt,1

.

7 end

Note that the weight at time t can be written as a product of the previous weight and the exponential
of loss, and this is one of the reason for calling it ”multiplicative weights”.

Here, “eta” η ∈ (0,∞) is a hyper parameter of the multiplicative weights algorithm and can be
interpreted as the learning rate. It can either be tuned as a function of T , or a function of {Xi}ti=1

(the latter being a form of adaptive learning, which we will discuss in future lectures).

Intuitively,

• When η is close to 0, the distributions will adhere close to the uniform distribution. Thus,
small values of η encourage a more uniformly guessing strategy since all predictions are given
equal weight.

• If η = 1, then pt,k can be viewed as the Bayesian posterior probability of class k, with
∑

k wt,k
as the marginal likelihood of the labels.

• On the other hand, large values of η quickly lead to one prediction with a disproportionate
amount of weight and will cause the algorithm to behave like follow-the-leader.

In this sense, η can be interpreted as knob between these two extremes – tuning it changes the
extent to which the algorithm randomizes.

Lecture 4: Multiplicative Weights I 4-7

4.5 Performance

How well does the multiplicative weights algorithm perform against previously mentioned strate-
gies? Here, we will only show empirical performance, and leave formal proofs for future lectures.

Recall our random strategy to be: flip a fair coin and choose 1 if heads and 0 otherwise.

As we can see below, that for a constant sequence, FTL performs the best with MW trailing. Both
of them have a regret sublinear to T , while the random strategy incurs regret linear to it.

For the adversarial sequence like 1-periodic or 2-periodic, FTL yields the highest regret (linear).
Multiplicative weights is better but is beaten by the random strategy. Among all of these three
cases, multiplicative weights shows its versatility toward different environments.

Lecture 4: Multiplicative Weights I 4-8

4.6 References

1. Nicolo Cesa-Bianchi and Gabor Lugosi. Chapter 6.2 Label Efficient Prediction from Predic-
tion, Learning, and Games, 2006.

2. Steven de Rooij, Tim van Erven, Peter D. Grunwald, and Wouter M. Koolen. Follow the
Leader If You Can, Hedge If You Must, 2014.

3. Tim Roughgarden. CS261, Lecture 11: Online Learning and the Multiplicative Weights Al-
gorithm, 2016.

