
EE 290S/CS 194: ML for Sequential Decision Making Under Uncertainty
Fall 2018

Lecture 5: Multiplicative Weights II
Lecturers: Anant Sahai, Vidya Muthukumar Scribe: Julian Chan

In this lecture note, we will examine the Multiplicative Weights algorithm in more detail. In
addition, we will provide a proof that Multiplicative Weights, with an appropriate choice of
its learning parameter, can achieve O(

√
T) regret on universal sequences. We then go on to

show that no algorithm can do better than O(
√
T) regret on universal sequences.

5.1 Recap

Recall our goal was to predict a {0, 1}T sequence X1, X2, ..., XT . In other words, Xi ∈ {0, 1}
for i = 1, ..., T . We wanted to do well in prediction despite not having a model for the
sequence. We saw last time that if we utilized a deterministic strategy like Follow the
Leader (FTL), an adversarial environment can force us to incur full loss because it always
has a ”one-step ahead” advantage. So we needed to randomize.

We then proposed using a fair coin toss to get X̂, meaning X̂ ∼ Bernoulli(1
2
), which would

incur an expected loss of T
2

across T trials. In fact, the environment can force us to incur
this loss by tossing its own fair coin. This strategy equates to minimizing the worst case
loss:

min
X̂

max
X

Loss(X̂,X)

How could we do ”better” with a randomized strategy, and by what standard are we using
to say a strategy is ”better” than another? We then defined this notion of regret with
respect to a reference class of predictors; that is, at time T , we would look back at how
well we performed relative to how the reference class would have performed (in our case,
we considered a constant predictor, or one that predicts all 0’s or all 1’s). We want this
difference to be as small as possible in hindsight; in other words, we don’t want to regret
our decisions.

So we introduced the Multiplicative Weights (MW) algorithm, parametrized by a learning
rate η, which essentially is performing a softmax-like operation on the probability of pre-
dicting 0 or 1 at time t. How does this softmax operation assign a probability to each class?
Let’s first define some terms:

wt,k =
e−ηLt−1,k

Zt
, k ∈ {0, 1}

• wt,k = the probability of picking k at time t

• Lt−1,k =
∑t−1

i=1 1{Xi 6= k} (Hamming Loss)

• Zt =
∑1

k=0 e
−ηLt−1,k (Normalization Factor)

Why did we define wt,k as above? If the Hamming Loss Lt−1,k is large, then we want wt,k, the
probability of picking k at time t, to be small. e−ηLt,k is a good choice because exponentiating
the Hamming Loss results in a heavier penalty on incorrect predictions. However, this doesn’t
satisfy the property that probabilities must be between 0 and 1, so we need to normalize.
Zt =

∑1
k=0 e

−ηLt−1,k = e−ηLt−1,0 + e−ηLt−1,1 is a suitable normalization factor since we only
have 2 classes (0 and 1), so we have that:

wt,0 =
e−ηLt−1,0

Zt
(5.1)

wt,1 =
e−ηLt−1,1

Zt
(5.2)

5-1

Lecture 5: Multiplicative Weights II 5-2

5.2 Multiplicative Weights Algorithm Analysis

Great! We now have an algorithm to randomize our predictions. But as with any algorithm,
we need to examine its performance in general. So now we pose the question: How do we
know the Multiplicative Weights algorithm with an ”exponential weight update” scheme
works well? It turns out that using this algorithm, the regret scales on the order of O(

√
T)

with proper tuning of the learning rate η.

However, the Hamming Loss function doesn’t seem like it has any relation to exponentials.
So, rather than proving the regret scales on the order of O(

√
T) with the Hamming Loss

function, we will prove that this result holds for some other loss and see that if we perform
well on this new loss function, we will perform well on the Hamming Loss function.

5.2.1 Defining a new loss function: Mix Loss

Claim 5.1 The Multiplicative Weights algorithm, with an appropriate choice of its learn-
ing parameter η, yields regret on the order of O(

√
T) where T is the time horizon of the

{0, 1} sequence.

Proof: (Note: Below, we present some intuition as to how we came up with the new loss
function. For more details on this loss function, see Freund and Schapire’s (1997) paper: A
Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.)

So how do we come up with this new loss function? We want this intermediate goal loss
function to behave as follows:

• For the magical rule that picks X∗ (either all 0’s or all 1’s, whichever is the best one
in hindsight) and gets loss L∗T , we want L∗T to be the loss

• Should look like e−ηLT,0 + e−ηLT,1 for total loss under Multiplicative Weights

Without loss of generality, let’s say X∗ = 1. We expect that the loss that we get will look
something like e−ηLT,0 + e−ηLT,1 . We need to do something to this term to get it to look just
like LT,1. Recall that if X∗ = 1, this means that e−ηLT,0 << e−ηLT,1 using the softmax idea.
We add in an additional factor of 1

2
to make the math work out later on, but the general

form of the loss function is as follows:

LT,1 ≈ −
1

η
ln(

1

2
(e−ηLT,0 + e−ηLT,1︸ ︷︷ ︸
Looks like loss at time T

)) (5.3)

This loss function must have some connection to the wt,k in Equations (5.1) and (5.2). Notice
that Equation (5.3) looks like the loss at the last time T , except it is missing the denominator
(normalizing factor at the previous time step T − 1). So, let’s multiply and divide by this
factor:

LT,1 ≈ −
1

η
ln((e−ηLT−1,0 + e−ηLT−1,1︸ ︷︷ ︸

Looks like loss at time T − 1

) · e−ηLT,0 + e−ηLT,1

e−ηLT−1,0 + e−ηLT−1,1
) (5.4)

Lecture 5: Multiplicative Weights II 5-3

But now, notice that the first term in Equation (5.4) looks like the loss at time T − 1, and
so similar to what we did before, we multiply and divide by the normalizing factor. As a
result, this expression becomes a telescoping product:

LT,1 ≈ −
1

η
ln(

e−ηL1,0 + e−ηL1,1

2
· ...e

−ηLT−1,0 + e−ηLT−1,1

e−ηLT−2,0 + e−ηLT−2,1
· e−ηLT,0 + e−ηLT,1

e−ηLT−1,0 + e−ηLT−1,1
) (5.5)

=
T∑
t=1

−1

η
ln(

e−ηLt,0 + e−ηLt,1

e−ηLt−1,0 + e−ηLt−1,1
) (5.6)

=
T∑
t=1

−1

η
ln(wt,0 · e−η1{Xt 6=0} + wt,1 · e−η1{Xt 6=1})︸ ︷︷ ︸

mt

(5.7)

Let’s define a new loss term mt = − 1
η

ln(wt,0 · e−η1{Xt 6=0} + wt,1 · e−η1{Xt 6=1}). This means:

MT = −1

η
ln(

1

2
(e−ηLT,0 + e−ηLT,1)) =

T∑
i=1

mt (5.8)

This new loss function MT is called the Mix Loss.

5.2.2 Incorporating Mix Loss into the Regret

Recall that we defined regret, RT , as the difference between our performance under Hamming
Loss, HT , and the best performance by a reference class in hindsight, L∗T . That is:

RT = HT − L∗T = (MT − L∗T) + (HT −MT) (5.9)

where in the last equality, we simply added and subtract the Mix Loss term, MT . This way,
we can characterize how the regret behaves using this new loss function we defined.

5.2.3 Gap Between MT and L∗T

From Equation (5.8), we have:

MT = −1

η
ln(

1

2
(e−ηL

∗
T + e−ηL̄

∗
T)) (5.10)

Instead of considering the loss incurred by picking 0 and similarly for picking 1, we consider
the loss incurred by picking the optimal choice in hindsight, hence replacing the Lt,k with
L∗T and L̄∗T .

We want to bound MT in terms of L∗T , so we need to find the smallest upper bound for MT .
Notice that in Equation (5.10), we have the e−ηL̄

∗
T term that we do not like (because it is

not in terms of L∗T). Since the exponential function is strictly positive and we are trying to
minimize the bound, we can just drop that term. So, we have:

MT ≤ −
1

η
ln(

1

2
(e−ηL

∗
T)) = L∗T +

ln 2

η
(5.11)

=⇒ MT − L∗T ≤
ln 2

η
(5.12)

This tells us that for the Mix Loss to be close to the optimal loss, we should increase η. In
fact, pushing η → ∞ will make the Mix Loss exactly equal to the optimal loss. This also
means that we are assigning a heavy weight to the loss function, meaning that incorrect
predictions are penalized even more. Essentially, with η → ∞, this algorithm will perform
exactly like Follow the Leader (FTL).

Lecture 5: Multiplicative Weights II 5-4

5.2.4 Gap Between HT and MT (Mixability Gap)

HT−MT =
T∑
t=1

(wt,0 ·1(Xt 6= 0)+wt,1 ·1(Xt 6= 1))−(−1

η
ln(wt,0 ·e−η1{Xt 6=0}+wt,1 ·e−η1{Xt 6=1}))

(5.13)
Equation (5.13) is also known as the mixability gap, which is the difference between the
linear loss HT and the η-mix loss MT . Notice in Equation (5.13) that there are 2 terms where
we have a sum of probability times some quantity. This should remind us of the concept of
expectation of a random variable. So let’s define a new random variable that will view these
terms as expectations:

`Y,t =

{
Xt if Yt = 0

1−Xt if Yt = 1
(5.14)

where Yt is our prediction at time t according to wt,k. In other words, Yt is a Bernoulli
random variable as follows:

Yt ∼ Bernoulli(wt,1)

Yt =

{
1 with probability wt,1

0 with probability wt,0
(5.15)

This means that:

HT −MT =
T∑
t=1

E[`Y,t] +
1

η
ln E[e−η`Y,t︸ ︷︷ ︸

MGF for `Y︸ ︷︷ ︸
CGF for `Y

] (5.16)

Let’s examine a part of the second term in Equation (5.16), lnE[e−η`Y,t]. Recall that this is a
Cumulant Generating Function (CGF) for `Y . The CGF is essentially the log of the Moment
Generating Function (MGF), where moments of the underlying probability distribution can
be extracted by differentiating the MGF. Recall that we can write the CGF as a Taylor
expansion:

lnE[e−η`Y] ≈ −ηE[`Y] +
η2

2
V ar(`Y) + ... (5.17)

To bound the gap HT −MT , we first need to bound this term. Since the CGF is the log of
the MGF, we can apply Hoeffding’s Lemma, which is an inequality that bounds the MGF
of any bounded random variable.

Lemma 5.2 (Hoeffding’s Lemma) Suppose X is a bounded random variable a ≤
X ≤ b. Then for every real s, we know that:

lnE[esX] ≤ sE[X] +
s2(b− a)2

8

Proof: Let’s first consider the zero-mean random variable X̃ such that X = X̃ + E[X].
So, we have:

lnE[esX] = lnE[es(X̃+E[X])]

= lnE[esX̃esE[X]]

= lnE[esX̃]esE[X]

= lnE[esX̃] + ln esE[X]

= lnE[esX̃] + sE[X]

Thus, we just need to show that lnE[esX̃] ≤ s2(b−a)2

8
. Notice that even though we

demeaned X, the width of the bounds on X̃, (b− a), is still the same. So, we can write

X̃ as a convex combination of the edges of its bounds: X̃ = tb+ (1− t)a where t = X̃−a
b−a .

Since the exponential function is convex, we can write:

etX̃ ≤ tetb + (1− t)eta =
X̃ − a
b− a

etb +
b− X̃
b− a

eta

Lecture 5: Multiplicative Weights II 5-5

Taking the expectation on both sides of the equation, and knowing that X̃ is a zero-mean
random variable (=⇒ E[X̃] = 0):

E[etX̃] ≤ − a

b− a
etb +

b

b− a
eta = ef(z)

where z = t(b− a), f(z) = −γz + log(1− γ + γez), and γ = − a
b−a . We know that:

f(0) =
df

dz
|z=0 = f ′(0) = 0

d2f

dz2
≤ 1

4
, ∀z > 0

Using Taylor’s theorem, we know that there exists an α ∈ (0, z) such that:

f(z) = f(0) + zf ′(0) +
z2

2
f ′′(α) =

z2

2
f ′′(α) ≤ z2

8
=
t2(b− a)2

8

Therefore, we conclude that:

lnE[etX̃] ≤ f(z) ≤ t2(b− a)2

8

Thus, if the random variable `Y ∈ [a, b], then from Hoeffding’s Lemma, we have:

lnE[e−η`Y] ≤ −ηE[`Y] +
η2(b− a)2

8
(5.18)

Now, let’s revisit Equation (5.16). Applying the bound we found in Equation (5.18), we
have that:

HT −MT =
T∑
t=1

E[`Y,t] +
1

η
lnE[e−η`Y,t]

≤
T∑
t=1

E[`Y,t] +
1

η
(−ηE[`Y,t] +

η2(1− 0)2

8
) (5.19)

=
T∑
t=1

η

8
=
Tη

8
(5.20)

So, we conclude that:

HT −MT ≤
Tη

8
(5.21)

5.2.5 Choosing an appropriate η

Looking at Equation (5.9), we have that:

RT = HT − L∗T = (MT − L∗T) + (HT −MT)

Incorporating the bounds we found in Equations (5.12) and (5.21), we have that:

RT ≤
ln 2

η
+
Tη

8
(5.22)

Recall our goal was to get our regret to grow sublinearly in T by properly tuning the learning
rate η. From Equation (5.22), we can see that a suitable choice for η would be η = 1√

T
. By

using this learning rate, we have that:

RT ≤
ln 2

1√
T

+
T · 1√

T

8
=
√
T · (ln 2 +

1

8
) (5.23)

Lecture 5: Multiplicative Weights II 5-6

Let’s see some examples of the effect of various learning rates η on different sequences.

Figure 5.1: Regret using FTL and MW using learning rates η = 1√
T

, 1
T

, and 1 on a sequence

generated from a Bernoulli(0.5) distribution.

The sequence in this example is generated by flipping a fair coin. Notice that in this example,
MW is being misled by the sequence, as depicted by the regret growing and shrinking over
time. This is because if the environment is flipping a fair coin independently over time,
then there is no ”pattern” to learn. As a result, the probabilities that MW updates in each
iteration aren’t really modelling the data distribution all that well. Another thing to note is
that FTL and MW with a constant learning rate seem to behave similar to each other, and
MW with adaptive learning rates seem to behave similar to each other as well.

Figure 5.2: Regret using FTL and MW using learning rates η = 1√
T

, 1
T

, and 1 on a sequence

generated from a Bernoulli(0.7) distribution.

The sequence in this example is generated by flipping a biased coin with P(Heads) = 0.7.
We see here that both FTL and MW in general yields sublinear regret, except in the case
where η = 1

T
(the green curve). In fact, it is evident here that for this specific sequence, MW

with learning rate η = 1
T

is randomizing too much, resulting in its poor performance.

The sequences in Figures 5.3 and 5.4 are 1-periodic and 2-periodic sequences, respectively.
We can think of these as adversarial sequences that are trying to fool our algorithm into
thinking one choice is better than the other. Let’s examine the 1-periodic sequence; the
2-periodic sequence explanation will be similar.

Lecture 5: Multiplicative Weights II 5-7

Figure 5.3: Regret using FTL and MW using learning rates η = 1√
T

, 1
T

, and 1 on a 1-periodic

(alternating) sequence.

Figure 5.4: Regret using FTL and MW using learning rates η = 1√
T

, 1
T

, and 1 on a 2-periodic

(twice alternating) sequence.

Lecture 5: Multiplicative Weights II 5-8

In the case of FTL, it actually performs the worst because it initially sees a 0, so the majority
votes for 0 in the next time step. However, the sequence then outputs a 1, in which case
FTL will predict 1 in the next time step. As this process goes on, we incur full loss and get
no predictions correct (as explained previously where deterministic algorithms are prone to
exploitation by adversarial environments). However, had we only stuck with one option, we
notice that FTL could’ve predicted half of the sequence correctly. Thus, the regret associated
with using FTL for this sequence grows linearly over time.

However, incorporating a randomized component into our algorithm (like MW) actually
still gives us sublinear regret. A key point to note is that even though MW introduces
randomization, using a fixed learning rate still doesn’t necessarily give us sublinear regret
(see the red curve). This is because with a fixed learning rate, we are penalizing the same
amount for short and long sequences (essentially placing an equal weight on each time step).
In fact, MW with a constant learning rate behaves like FTL in the long run. However, an
adaptive learning rate that is a function of the sequence length does give us sublinear regret
because it induces recency bias, giving more importance to recent samples than samples that
were drawn a long time ago.

To summarize our observations from the four examples above, deterministic algorithms like
FTL certainly perform better than MW on specific sequences like purely random sequences,
but when the sequence is generated by an adversary, we find that MW performs better than
FTL. In fact, from the proof above, we showed that MW actually yields sublinear regret on
universal sequences (whether they are random or generated by an adversary) because the
proof made no assumptions about the sequence.

Lecture 5: Multiplicative Weights II 5-9

5.2.6 Can we do better?

At this point, a natural question to ask is: can we do better than O(
√
T) on this type of

sequence by picking a another η or even using a different algorithm? First notice that this
bound holds universally for every sequence {X}Tt=1 because we never used anything about
the sequence in our proof. In addition, notice in Equation (5.22) that there is a sort of
push-pull effect happening. If we increase η too much, sure the first term will decrease, but
the second term will blow up. Conversely, if we decrease η too much, the first term will blow
up while the second term decreases. A general rule of thumb to balance two terms where
one is increasing and the other is decreasing with respect to some parameter is to pick a
parameter that brings the two terms to the same order of magnitude. Certainly, we can do
better than O(

√
T) by using calculus to optimize to find the optimal η.

However, now we ask the question: is it possible for a single algorithm to do better than
O(
√
T) regret on arbitrary sequences? The answer is NO. This doesn’t mean that for a

specific sequence, an algorithm cannot do better than O(
√
T) regret. Consider the sequence

{0}Tt=1. An algorithm that always picks 0 will achieve sublinear regret; in fact, it will have
no regret because it makes the same prediction as the best choice in hindsight.

Claim 5.3 A single algorithm cannot universally do better than O(
√
T) regret on arbi-

trary sequences.

Proof: Suppose for i ∈ {1, 2, ..., T}, Xi ∼ Bernoulli(1
2
) i.i.d. This is essentially saying

that we have a uniform distribution over all length T sequences. We know that if the
environment generates a sequence of length T according to a Bernoulli(1

2
) distribution,

it can force us to incur an expected total loss of T
2
, regardless of which algorithm we use.

Now we ask ourselves how can the best choice in hindsight be better than T
2
? If we have

a sequence of fair coin tosses, our first intuition is that if the probability of getting 0 and
1 are the same, then about half of the outcomes will be 0 and about half will be 1. So
at first glance, it seems as though it doesn’t matter if we pick 0 or 1. Either way, our
expected loss will be T

2
. Another way of looking at the best predictor in hindsight is to

see which class has more net occurrences, and just pick that class all the time. If there
were more 0s than 1s that occurred, the best predictor in hindsight should pick 0. So it
may be the case that the dominant term in our loss is T

2
, but how about the next term?

What is the fluctuation like?

To understand this, let’s assume we have a sequence:

X1, X2, ..., XT

We want to see whether there were more 0s or 1s (regardless of which was more frequent)
to determine the advantage that hindsight has, so we care about the quantity |# of 1s -
of 0s|: ∣∣∣∣∣

T∑
t=1

[1(Xt = 1)− 1(Xt = 0)]

∣∣∣∣∣ =

∣∣∣∣∣
T∑
t=1

Rt

∣∣∣∣∣
where Rt are i.i.d. Rademacher random variables:

Rt =

{
+1 if Xt = 1

−1 if Xt = 0

The size of this quantity tells us how much of an advantage hindsight will have. As T
tends to infinity, we can invoke the Central Limit Theorem and claim:

lim
T→∞

1√
T

T∑
t=1

Rt ∼ N (0, 1)

Lecture 5: Multiplicative Weights II 5-10

Lemma 5.4 If S ∼ N (0, σ2), then Y = |S| follows a half-normal distribution. The
PDF of Y is:

fY (y;σ) =

√
2

σ
√
π
e−

y2

2σ2

and the expectation is:

E[Y] =
σ
√

2√
π

So, the expected advantage that hindsight will have (net difference in the number of 0s

and 1s) will be like
√
T ·
√

2
π
. Recall that we can write the expected regret as:

E[Regret] = E[Loss]− E[Best loss in hindsight]

where E[Loss] = T
2

by virtue of the environment forcing us to incur this loss by flipping
a fair coin to generate the sequence and E[Best loss in hindsight] is the net advantage
that the best predictor (from the reference class of constant predictors) in hindsight has.
Thus, we have:

E[Regret] =
T

2︸︷︷︸
Expected Loss

−
√
T ·
√

2

π︸ ︷︷ ︸
Net advantage in hindsight

The reason why we cannot do better than O(
√
T) regret because the best in hindsight

has a
√
T advantage over what we can reasonably expect to get.

We can actually think of the
√
T ·
√

2
π

term as an overfitting term or unfair advantage because

it is essentially looking at information that isn’t supposed to be available to it. No algorithm
can ever attain this advantage and there is no way we can avoid it. It is in fact our definition
of regret is allowing this advantage to happen.

Lecture 5: Multiplicative Weights II 5-11

5.3 References

1. De Rooij, Steven, et al. ”Follow the Leader If You Can, Hedge If You Must.” Journal
of Machine Learning Research, vol. 15, no. 1, Jan. 2014, pp. 1281-1316.

2. Freund, Yoav, and Robert E. Schapire. ”A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting.” Journal of Computer and System
Sciences, vol. 55, no. 1, Aug. 1997, pp. 119-139., doi:10.1006/jcss.1997.1504.

3. ”Tight Bounds for Specific Losses.” Prediction, Learning, and Games, by Nicolo Cesa-
Bianchi and Lugosi Gabor, Cambridge University Press, 2006, pp. 40-66.

