
EE290S/CS194 Machine Learning for Sequential Decision Making Under Certainty Fall 2018

Lecture 6: September 11th 2018
Lecturer: Prof. Anant Sahai Scribes: JungYoon Song, Nikunj Jain, Liam Purvis

Note:

6.1 Recap of Multiplicative Weights

1. Problem of Sequential Prediction: (X1, · · · , XT) ∈ {0, 1}T , we make no generative assumption
and instanteneous loss vector `t = [`t,0, `t,1]. We are getting this sequence online and the sequence
can take Xi ∈ {0, 1}. The key difficulty in this problem is that we have no generative assumption on
the sequence, i.e. we don’t have a probabilistic model. At each round, we have to predict something
and the prediction itself is allowed to be randomized. In other words, we can choose it from some sort
of probability distribution, Wt, denoting the probability of predicting a one in the next round.

2. Prediction at round t: distribution ~Wt with realization X̂t and total loss L = [Lt,0, Lt,1].

3. Goal: Minimize expected regret i.e. E[RT] :=
∑T
t=1 <

~Wt, ~Lt > −minx∈{0,1} `T,x, where

< ~Wt, ~Lt >= Wt,0 · `t,0 +Wt,1 · `t,1.

The intuition behind this loss function is that in the context of no generative assumption, it’s useful
to define a realistic benchmark. Our reference class is then how well you could have done if you have
decided to predict 0 or 1 all the time, i.e., a constant predictor. Hence, we introduce expected regret,
defined as the total loss our algorithm encounters on average minus the the best loss we could have
possibly achieved from our reference class.

4. Last class: exponential with respect to update. Wt,x ∝ exp(−ηLt−1,x)⇒

Theorem: E[RT] ≤
√
T ln 2 for η ∼ ln 2√

T
.

No matter what the sequence looks like, we have that regret is scaling at a sublinear scale. In to-
day’s lecture, we are going to derive this algorithm as the optimal solution to a particular kind of
regularization, then view it as a response as noise perturbation.

6.2 Multiplicative Weights through Regularization

We first setup a reasonable function to optimize each round by mixing a loss function that is from our
reference class, and then regularize it to incorporate our prior belief. Note, our prior is that we believe our
predictions should involve randomness, and hence we will try to mathematically express that belief.

”Follow - the - Leader” like: at round t, we simply look at the loss we would have incurred if we have
always predicted 0’s or 1’s. We know that this algorithm is not very good because it is behaving in a pre-
dictable manner and hence a sequence requiring a one-step memory (the alternating sequence) forces us to

6-1

Lecture 6: September 11th 2018 6-2

always incur a loss.

X̂t = arg min
x∈{0,1}

Lt−1,x, Ŵt = arg min
~W
− < Ŵ , L̂t−1 >= arg min

~W
−W0Lt−1,0 −W1Lt−1,1.

”Pure Guessing”: As an attempt at randomization, we could look at simply outputting a purely random
guess, incorporating no information about the past sequence. This is a regularizer that is on the extreme
side. This ”purely guessing” means that you have completely randomized update and completely ignore
information about the loss function. You simply have 0 and 1 occurring with probabilities of 1

2 respectively,

and Ŵt = [12 ,
1
2]. What we truly want is to combine these two updates, FTL and Pure Guessing, in some

meaningful way.

To do this, we want to be able to mathematically express the “measure of randomness” in our distribu-
tion, and balance increasing the randomness against decreasing the loss incurred.

For now, let’s consider a new sequence of length n: Y1, · · · , Yn ∼︸︷︷︸
IID

Bern(p) - we assume a sequence gen-

erated as independent flips of a biased coin. Now, given such an assumption, clearly, some sequences are
more likely than others. We are interested in the following two questions:

Question 1: What does a typical sequence looks like?

Question 2: What is the size of the set of typical sequences, and how does it compare to the size of
the sample space?

To build intuition, notice that in any reasonable setup, a typical sequence is one which does not deviate “too
far” from the average. Thus, we can measure the estimate we get from the sequence, p̂ := 1

n

∑n
i=1 Yi. Then

notice, E[p̂] = 1
nnp = p.

So, we have that p̂ is an unbiased estimator of the true probability. Now, p̂ is itself a random variable,
and we can use the Law of Large Numbers to come up with a stronger statement: p̂ = p with a high
probability, that is,

P[|p̂− p| ≤ ε] ≥ 1− 2 exp
(
−nε2

)
.

Thus, as our number of samples increases, the probability that our estimator is away from the
true probability dies exponentially with our sample size.

Now, we define a sequence to be typical (up to a factor of ε), if the estimator we derive from it is within ε of

the true value. Then we define the typical set, A
(ε)
n , as the set of possible sequences, which are typical.

A(ε)
n :=

{
(Y1, · · · , Yn) ∈ {0, 1}n : p− ε ≤ 1

n

n∑
i=1

Yi ≤ p+ ε
}

What’s the size of this set?

Thus, any typical sequence will have between np − ε and np + ε ones. Then, it follows that the size of
this set is exactly the number of ways to choose np ones out of n slots. Recall Stiriling’s approximation

formula: n! ≈
√

2πn
(
n
e

)n

Lecture 6: September 11th 2018 6-3

Figure 6.1: Visualizing the set of typical sequences.

|A(ε)
n | =

n(p+ε)∑
k=n(p−ε)

(
n

k

)
≈
(
n

np

)
=

n!

(np)!(n(1− p))!
≈ nne−n

(np)npe−np(n(1− p))n(1−p)e−n(1−p)
(Stirling’s approximation)

=
nne−n

nnppnpe−npnn(1−p)(1− p)n(1−p)e−n(1−p)

=
1

pnp(1− p)n(1−p)

=
(1

p

)np(1

1− p

)n(1−p)
=
(

2ln2(
1
p)
)np(

2ln2(
1

1−p)
)n(1−p)

= 2

(
npln2

(
1
p

)
+n(1−p)ln2

(
1

1−p

))
= 2

(
nH(p)

)

where we define H(p) := plog2
1
p + (1− p)log2

1
1−p . This is the standard definition of H, and it is commonly

called the “entropy” function. Some final comments on the size of the typical set:

1. if p = 1, then |A(ε)
n | = 2nH(1) = 2n·0 = 1. Note that this is a constant, as the only typical sequence is

the one with all ones.

2. if p = 0.5, then |A(ε)
n | = 2nH(1/2) = 2n. Note that the difference between these two is exponential.

The more the random the Bernoulli sequence is, the larger the size of the set we should expect to see.
Hence, it is far more difficult for the adversary to fool you if the p value is close to 0.5.

We now build some intuition for the behavior of H.

Lecture 6: September 11th 2018 6-4

Figure 6.2: Plot of the entropy v/s p = P (X = 1).

Notice, entropy achieves its peak at p = 0.5, and is symmetric in p and 1− p. Thus, if a sequence is “highly
random” (i.e., it has p values close to 0.5), the sequence has a high measure of entropy. When a sequence
is almost constant (p close to 0 or 1), the sequence has low entropy. Hence, we can then view entropy as
the mathematical measure of randomness we want, based on a derivation with a foundation in information
theory through typical sets.

Entropy function: We will use this as a regularizer to express the randomness in our prediction vector.
Intuition: a function that expresses randomness in prediction, such that the amount of randomness is max-
imized when the prediction is just purely guessing.

H(~W) =
∑

x∈{0,1}

Wx ln
(1

Wx

)
.

Observe that in the case of having only two outcomes,

~W =
[
1− p p

]
, H(~W) = H(p) = (1− p) ln

(1

1− p

)
+ p ln

(1

p

)
.

Through the plot, observe that this function is concave in p.

Idea: FTL + Entropy Regularization.

~Wt = arg max
~W
− < ~W, ~Lt−1 >︸ ︷︷ ︸

loss objective function

+H(~W) · 1

η
η = regularizing paramter.

Here, we will use entropy with the natural logarithm instead of logarithm in base 2 - this does not affect the

Lecture 6: September 11th 2018 6-5

intuitive behavior, but makes analysis mildly easier.

~Wt =
[
1− pt pt

]
, W =

[
1− p p

]
pt = arg max

p∈[0,1]
−Lt−1,0(1− p)− Lt−1,1 · p︸ ︷︷ ︸

linear function

+
1

η
H(p)︸ ︷︷ ︸

concave function

*

f(p) = p
(
Lt−1,0 − Lt−1,1

)
− Lt−1,0 + p ln

(1

p

)1

η
+ (1− p) ln

(1

1− p

)1

η

= p
(
Lt−1,0 − Lt−1,1

)
− Lt−1,0 − p ln(p)

1

η
− (1− p) ln(1− p) 1

η

f ′(p) =
(
Lt−1,0 − Lt−1,1

)
− (1 + ln p)

1

η
+
(

1 + ln(1− p)
)1

η

=
(
Lt−1,0 − Lt−1,1

)
+

1

η
ln
(1− p

p

)
f ′(pt) = 0⇒ ln

(1− pt
pt

)
= η

(
Lt−1,0 − Lt−1,1

)
⇐⇒ 1− pt

pt
= exp

(
η(Lt−1,0 − Lt−1,1

)
⇐⇒ pt =

exp
(
η(Lt−1,0 − Lt−1,1)

)
exp

(
η(Lt−1,0 − Lt−1,1)

)
+ 1

=
exp

(
− ηLt−1,1

)
exp

(
− ηLt−1,1

)
+ exp

(
− ηLt−1,0

)
With this setup, multiplicative weight updates emerge as the optimal choice.

For (*), entropy is a concave function in p and we have a linear loss function, so effectively we are maximizing
a combination of a linear function and a concave function. This means that all we need to do is differentiate
with respect to p and find a critical point, and concavity implies that this must be the globally optimal point.

Remark: The reason we want to go through this is to connect machine learning and optimization, and
as we go further in the class, we will choose a continuous action space and work with a much bigger set than
{0, 1}. When generalizing though, the ideas of regularization will follow a similar pattern.

6.3 Multiplicative Weights through Perturbation

Firstly, perturbed, noise injection and smoothing all mean the same thing. Also, as we will see the plots
towards the end of section, adding random noise will make the system stable.

X̂t = arg min
x∈{0,1}

(
Lt−1,x + Nt,x︸︷︷︸

in some distribution

)
, Nt,x is a random.

Suppose Nt,x ∼ Gumbel(0, 1η) IID with p.d.f of the distribution fGumbel(x; η) = η exp
(
− ηxexp(−ηx)

)
.

Suppose X1, X2 are IID Gumbel(0, 1η). Then X1 −X2 ∼ Logistic
(

1
η

)
. Its CDF is given by

Flog(x) = P[X1 −X2 ≤ x] =
1

1 + e−ηx
.

Lecture 6: September 11th 2018 6-6

pt = P[X̂t = 1] = P[Lt−1,1 +Nt,1 ≤ Lt−1,0 +Nt,0]

= P[Nt,1 −Nt,0 ≤ Lt−1,0 − Lt−1,1]

= Flog(Lt−1,0 − Lt−1,1) =
1

1 + exp
(
− η(Lt−1,0 − Lt−1,1)

)
=

exp
(
− ηLt−1,1

)
exp

(
− ηLt−1,1

)
+ exp

(
− ηLt−1.0

)

