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1 Follow the Perturbed Leader (FTPL) Recap

As a recap, FTPL is a modification of the traditional Follow the Leader (FTL) algorithm where, at each
time step, we perturb the cumulative loss. In other words, we determine our prediction at time t using
the following objective:

x̂t,FTPL = arg min
x∈{0,1}

Lt−1,x︸ ︷︷ ︸
original loss

objective

+ Nt,x︸︷︷︸
random

perturbation

(1)

We also noted that if the perturbation is distributed according to a Gumbel distribution with parameters
0 and 1

η , the probability that the t-th prediction is x is the same as if we had used the multiplicative
weights update.

2 FTPL Regret

Our definition of regret is the difference between the loss we incurred using our current strategy and the
best loss achieved for choosing a single value and sticking with it, i.e.

RT =

 T∑
t=1

lt,x̂t

− Lt,x∗

Claim. For all possible sequences of losses where the loss is bounded and the noise is spread out (i.e.
the noise has a sufficiently high variance), FTPL achieves an expected regret that is bounded by

E[RT ] ∈ O(
√
T )

In the context of a binary sequence, where we incur a Hamming loss at each time step, and with
perturbations that are distributed according to a Gumbel distribution, this bound manifests itself as

E[RT ] .
√
T ln 2

Consider the sequences of losses

{l1,0, l2,0, . . . , lT,0}
{l1,1, l2,1, . . . , lT,1}

where lt,x is the loss incurred at time t for value x as defined by the Hamming loss function.
In expectation, running FTPL on this sequence is the same as running FTL on

{N0, l1,0, l2,0, . . . , lT,0}
{N1, l1,1, l2,1, . . . , lT,1}

where Nx is some value sampled from a perturbation distribution. Throughout our analysis of this
alternative FTPL view, we are assuming that the adversary generating the sequence is offline in that it
decides its sequence at the very beginning and doesn’t adapt to our predictions. Notice that even with
the perturbation we add at the beginning, an adaptive adversary will still be able to trick the algorithm.
Thus, we are working with a weakened adversary where this is not the case.
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Note. Running FTL on this sequence is different from FTPL because we only sample from the
perturbation distribution once at the beginning. In other words, we are shifting the cumulative loss,
Lt,x, by a constant.

Lt,x =

 t∑
i=1

li

+Nx

However, this is the same as FTPL in expectation. We can see this by observing that in the case of
FTPL, we would normally have a randomly sampled perturbation coming in with each incremental
loss, as we can see in equation 1. When all of these perturbation terms are summed up, due to
linearity of expectation, the expectation of the sum of these t randomly sampled perturbations is
equivalent to the expected value of some Nx sampled from a distribution. Therefore, we can use this
simplified setting to bound the expected regret.

The crucial idea is that our simplified view of FTPL is stubborn. Since we are adding a perturbation at
the beginning for each action (and assuming that the difference of these perturbations is well spread out),
we are separating the losses from the start. At every time step, we can only ever move one of the losses
at a time, and even than at most by 1. So, our algorithm is “stubborn” in the sense that given the clear
choice at the beginning, it may take some time for the other choice to catch up and have its loss dip
below. Only at that point would the prediction change. Now, we can further understand the effects of
this FTPL through some specific examples with some arbitrarily chosen perturbation to illustrate the
benefits and disadvantages of separating the losses at the start.

Example. Let’s consider a sequence of i.i.d. Bernoulli random variables with parameter 0.7, which is
something that vanilla FTL would do fairly well on, and analyze the effect our choice of perturbation
has on what we think is the best action under the perturbed losses.

If we have a very small perturbation, then the effect on the cumulative loss is naturally also small.
We can see in the plot above that 1 was the best action in hindsight in the original situation (since it
had a lower cumulative loss), and that remained true even after perturbing the losses. In other words,
x̃∗ = x∗.
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Now, since we’ve chosen a higher perturbation, some of the loss plots are growing quite close.
Specifically, if we shift the loss from choosing 1 by 5, and that of choosing 0 by −5, the cumulative
losses are much closer than they would be before. In this scenario, x̃∗ is still equal to x∗, but the lead
that 1 had over 0 under perturbations shrank in some scenarios.

Our noise is pretty huge in this scenario, so much so that 1 now actually looks worse than 0 if we
perturbed its loss by 10 and 0’s loss by −10. In this case, x̃∗ 6= x∗.

In essence, in this case where FTL performs fairly well, we want to make sure that the initial
perturbation of the losses isn’t too much, otherwise FTPL will do poorly.

Now, let’s consider the effect of noise on a sequence of alternative 0’s and 1’s, which FTL does very
poorly on.

Here, the crucial thing is that as long as the initial perturbation that we apply to the losses makes
them sufficiently separated, then FTPL will do well. Unlike before, a larger noise is in fact beneficial.

Here lies the core tension—we want to pick a perturbation distribution that is both spread out enough
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to differentiate two losses for sequences where FTL does poorly, but remains small enough that we
don’t do too much worse than FTL on sequences for which it does well.

We proceed by splitting the regret expression into two terms

RT =
T∑
t=1

lt,x̂t
− LT,x̃∗︸ ︷︷ ︸

R
(A)
T

(est. error)

+ LT,x̃∗ − LT,x∗︸ ︷︷ ︸
R

(B)
T

(approx. error)

, (2)

where x̃∗ is the best action in hindsight under the perturbed losses, i.e.,

x̃∗ = arg min
x

LT,x +Nx

and x∗ is the best action under the original losses, i.e.

x∗ = arg min
x

LT,x

Notice that these two values are different (i.e. x̃∗ 6= x∗) if the amount by which we perturbed the
cumulative loss is large enough to overcome the lead that the LT,x∗ had over LT,x̃∗ . To bound our
expression for E[RT ], we will bound E[R(A)

T ] and E[R(B)
T ] separately.

2.1 Analysis of Approximation Error, R
(B)
T

The approximation error we have is the error we incur by aiming at the wrong target, that is, by choosing
x̃∗ as our reference class rather than x∗. This is just the difference between LT,x̃∗ − LT,x∗ .

Lemma 1. We can bound the expected value of R(B)
T using the Gumbel distribution for our pertur-

bations as:
E[R(B)

T ] ≤ ln(2)
η

Proof. We can split up our analysis into two cases since

E[R(B)
T ] = E[R(B)

T | x̃∗ = x∗]P[x̃∗ = x∗] + E[R(B)
T | x̃∗ 6= x∗]P[x̃∗ 6= x∗]

Case 1 (x̃∗ = x∗): Since these two are equal, the cumulative losses are necessarily equal, so the
R

(B)
T given that x̃∗ = x∗ is 0. Therefore, this term disappears from the expectation.

Case 2 (x̃∗ 6= x∗): Since our optimal choice after perturbation is different from that before, that
means that the perturbation we applied for that value (recalling that x̃ ∈ {0, 1}) made its loss dip
below that of the opposite value. We can write this as an explicit inequality

LT,x̃∗ +Nx̃∗ ≤ LT, not(x̃∗) +Nnot(x̃∗)

By the assumption we made earlier (that x̃∗ 6= x∗ ⇒ not(x̃∗) ≡ x∗), this inequality becomes

LT,x̃∗ +Nx̃∗ ≤ LT,x∗ +Nx∗

We can rearrange terms to see that

LT,x̃∗ − LT,x∗ ≤ Nx∗ −Nx̃∗︸ ︷︷ ︸
diff. in perturbations

We define N to be the difference in perturbations, i.e. N := Nx∗ −Nx̃∗ .

Note. In the context of case 2, N must be at least 0. We prove this by contradiction. We are in
case 2, so x̃∗ 6= x∗. If N were less than 0, then that means that the loss for the optimal solution
without perturbations, LT,x∗ , was shifted up less than the loss for the perturbed solution was
shifted down. But in that case, x∗ would look like a better solution, even after perturbations,
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than not(x∗), which means that x̃∗ = x∗. Contradiction.

The left hand side of the equation is exactly the expression for R(B)
T . If we take the expectation of

both sides of the inequality, using the fact that N must be greater than 0 for x̃∗ 6= x∗, then

E[R(B)
T | x̃∗ 6= x∗] ≤ E[N | N ≥ 0]

We have already proved that if Nx ∼ Gumbel(0, 1
η ), FTPL has a similar expected regret as

multiplicative weights. We’ll use this as the distribution for our perturbations and recall that
the difference of two Gumbel distributions (i.e. Nx∗ and Nx̃∗) is a Logistic distribution (i.e.
N ∼ Logistic(0, 1

η )). Now, we can find an expression for the right side of the inequality (expressions
for the PDF for a logistic distribution are from Wolfram MathWorld1).

E[N | N ≥ 0] = 1
P(N ≥ 0)

∫ ∞
0

xfN (x) dx = 1
1/2

∫ ∞
0

x
ηe−xη

(1 + e−xη)2 dx

= 2
∫ 1

1
2

−1
η

ln 1− u
u

du
(

where u = 1
1 + e−xη

)
= −2

η

∫ 1

1
2

ln(1− u)− ln(u) du

= −2
η

((u− 1) ln(1− u)− u− u ln(u) + u)
∣∣∣∣1
1/2

= −2
η

ln
(

(1− u)u−1

uu

)∣∣∣∣1
1/2

= −2
η

 lim
u→1

ln
(

(1− u)u−1

uu

)
− ln

(
(1/2)−1/2

(1/2)1/2

)
= −2

η

(
ln(1)− ln

(
(1/2)−1

))
= 2 ln (2)

η

In the second step we used the fact that N is symmetric about 0 by construction, since it is the
difference between two i.i.d. variables. Therefore, probability that it is larger than 0 is 1

2 . Now, we
can actually bound the expected value of R(B)

T

E[R(B)
T ] = E[R(B)

T | x̃∗ = x∗]P[x̃∗ = x∗] + E[R(B)
T | x̃∗ 6= x∗]P[x̃∗ 6= x∗]

= 0 + E[R(B)
T | x̃∗ 6= x∗]P[x̃∗ 6= x∗] = E[R(B)

T | x̃∗ 6= x∗]P[x̃∗ 6= x∗]

In the above note, we proved that the x̃∗ 6= x∗ implies that N > 0. In other words, the difference in
perturbations between the true x∗ and not(x∗) must be greater than 0 for there to be any possibility
of having a different optimal leader at time T . However, there could be cases where the difference is
positive but no leader change happened. This happens in the plot for the sequence of i.i.d. Ber(0.7)
variables. If we isolate the 0 with negative perturbation and 1 with positive perturbation. The
difference in perturbations between the true optimal, 1, and 0 are clearly positive, but there was no
leader change in the end. Therefore, we can conclude that

P[x̃∗ 6= x∗] ≤ P[N > 0] = 1
2

Therefore,

E[R(B)
T ] = E[R(B)

T | x̃∗ 6= x∗]P[x̃∗ 6= x∗] ≤ 2 ln 2
η
· 1

2

E[R(B
T ] ≤ ln 2

η

1http://mathworld.wolfram.com/LogisticDistribution.html
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2.2 Analysis of Estimation Error, R
(A)
T

The estimation error component of the regret reflects the error in our ability to find the best possible
sequence of x̂t with respect to the best loss we can achieve through our reference model, which in this
case is a constant choice of x. Specifically, we defined R

(A)
T as

R
(A)
T =

T∑
t=1

lt,x̂t
− LT,x̃∗ ,

which has two components. The sum is the loss that we accumulate from using FTL at each time step on
the perturbed losses. The second term is the total loss if we had taken the best action in hindsight (on
the perturbed loss) and stuck with it. We would like to bound R(A)

T , but before we make any claims, let’s
refer back to our understanding of the simplified view of FTPL as being “stubborn.”
As we explicitly state below, we will bound the estimation error by measuring the “stubbornness” of our
algorithm, i.e., the number of times it changes its mind about the best action in hindsight. This is a
natural measure for the estimation error since our reference class is the single best-in-hindsight action at
time T . Meanwhile, in our actual simplified view of the FTPL algorithm, we start off with an arbitrary
perturbation or “stubbornness“ in a certain direction, which if large enough would force us to predict
the same value at each time for a potentially longer period, essentially mirroring the reference class
model. Thus, to understand the difference between our predictor and the reference class, which is what
estimation error represents, we must understand how many times our algorithm changes its mind i.e.
returns a different prediction from the previous iteration.

Claim. R(A)
T is at most the total number of leader changes while executing the FTL algorithm on

the perturbed losses, where the losses are bounded by 1 due to our use of the Hamming function. At
any time step t, a leader change happens when x̂t+1 6= x̂t, so we can bound as follows:

R
(A)
T ≤

T∑
t=1

1[x̂t+1 6= x̂t]

Proof. To begin, we can re-express the cumulative loss term of the R(A)
T equation as a telescoping sum

of the difference between consecutive cumulative losses at each time step. Furthermore, we can let
x̃∗ = x̂T+1, since x̂t+1 is just the best x we could have chosen over the total perturbed loss LT,x +NT+1.
This exactly matches the definition of x̃∗, i.e. the optimal x in hindsight under the perturbed cumulative
loss. Thus, we have:

LT,x̃∗ =
T+1∑
t=2

(Lt−1,x̂t − Lt−2,x̂t−1)

Thus, rewriting R(A)
T , we have:

R
(A)
T =

T∑
t=1

lt,x̂t
−

T+1∑
t=2

(Lt−1,x̂t
− Lt−2,x̂t−1)


=

T∑
t=1

lt,x̂t
−

 T∑
t=1

(Lt,x̂t+1 − Lt−1,x̂t
)


=

T∑
t=1

(lt,x̂t
− (Lt,x̂t+1 − Lt−1,x̂t

))

From here, we can split up our analysis again into two cases:

Case 1: Suppose that x̂t+1 = x̂t. In this case, the chosen x̂ didn’t change. Thus, we can simplify
the difference of the cumulative losses term to:

Lt,x̂t+1 − Lt−1,x̂t
= Lt,x̂t

− Lt−1,x̂t
= lt,x̂t

Thus in this case, the term in the summation of R(A)
T above will be lt,x̂t

− lt,x̂t
= 0.
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Case 2: Suppose that x̂t+1 6= x̂t. In this case, we cannot make any exact conclusions, but we can
still use what we know about the losses to bound the term of the summation. Specifically, we know
that lt,x̂t

≤ 1, since the loss can only either be 1 or 0 at any specific time step. Now, we can rewrite
this term by simply taking an incremental loss term out of the first cumulative loss term.

Lt,x̂t+1 − Lt−1,x̂t
= lt,x̂t+1 + Lt−1,x̂t+1 − Lt−1,x̂t

Now, we note that based on the definition of the Hamming loss, we have that lt,x̂t+1 ≥ 0. Furthermore,
since we know that these cumulative losses are the ones over which the argmin was computed to
determine x̂t, we know that the cumulative loss from using x̂t must be lower at time step t− 1, so
we have that

Lt−1,x̂t+1 − Lt−1,x̂t ≥ 0

Consequently, putting these both together, Lt,x̂t+1 − Lt−1,x̂t
must also be greater than or equal to

0. Using the upper bound on the incremental loss term and the lower bound on the difference of
the cumulative losses, we thus have:

lt,x̂t − (Lt,x̂t+1 − Lt−1,x̂t) ≤ 1

Thus, using the equalities/bounds from both of these cases, we can then bound R
(A)
T as follows:

R
(A)
T ≤

T∑
t=1

1[x̂t+1 6= x̂t]

Now that we have bounded R
(A)
T itself, we can determine the probability of a leader change happening

(x̂t+1 6= x̂t) to bound the expectation.

Lemma 2. We can bound the expected value of R(A)
T as follows:

E[R(A)
T ] ≤ ηT

Proof. Starting from the bound we deduced earlier, in order to be able to bound the expected value of R(A)
T ,

we need to be able to bound the probability of a leader change happening, which is P[x̂t+1 6= x̂t].

Note. Let’s think about what it means for a leader change to occur. Recall that in this setting, we
added a noise term at the beginning of the sequence. The effect of this was that, instead of starting
the cumulative losses at the same place at 0, we have separated them by the difference in the noise
values for both actions. Concretely, the difference between our cumulative losses at the beginning is
N0 −N1.
If the initial difference is sufficiently large, then FTL has a clear winner at the beginning. Furthermore,
the losses at each time step can only increase the cumulative loss of one of the actions by 1 (which
we show in the figure below). So, the clear winner will remain the same until its cumulative loss
becomes neck-and-neck with the other action. Only at this point can leader changes occur. Therefore,
finding a bound on the probability of a leader change boils down to determining whether the initial
separation between the cumulative losses was sufficiently large.
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Lt−1,0 +N0Lt−1,1 +N1

∆L

lt,1
lt,2

R

To come up with an upper bound for this probability, we can also equivalently find a lower bound for the
complementary probability as follows:

1− P[x̂t+1 6= x̂t] = P[x̂t+1 = x̂t]
= P[x̂t+1 = 1 | x̂t = 1]P[x̂t = 1] + P[x̂t+1 = 0 | x̂t = 0]P[x̂t = 0]

Here, we recall how we select the x̂t and x̂t+1 actions themselves in the first place to help us find these
probabilities. Specifically, we let x̂t = 1 when:

Lt−1,1 +N1 ≤ Lt−1,0 +N0

Rewriting the above, we have:
N0 −N1 ≥ Lt−1,1 − Lt−1,0 =: v1

Similarly, for x̂t+1 = 1, we have:
Lt,1 +N1 ≤ Lt,0 +N0

Again, rewriting the above, we have:

N0 −N1 ≥ Lt,1 − Lt,0
= (Lt−1,1 + lt,1)− (Lt−1,0 + lt,0)
= (Lt−1,1 − Lt−1,0) + (lt,1 − lt,0)

Here, we can define v1 := Lt−1,1 − Lt−1,0 and c1 := lt,1 − lt,0, so we have:

N0 −N1 ≥ v1 + c1

Now, using the definitions of v1 and c1, we thus have:

P[x̂t+1 = 1 | x̂t = 1] = P[N0 −N1 ≥ v1 + c1 | N0 −N1 ≥ v1]

Performing a similar process for the cases where x̂t+1 = 0 and x̂t = 0, we will get the following, where
v2 = Lt−1,0 − Lt−1,0 and c2 = lt,0 − lt,1:

P[x̂t+1 = 0 | x̂t = 0] = P[N1 −N0 ≥ v2 + c2 | N1 −N0 ≥ v2]

Thus, putting these together and recalling that the difference of two Gumbel distributions (i.e. N0 and
N1) is a Logistic distribution (i.e. N ∼ Logistic(0, 1

η )), we have that:

P[x̂t+1 = x̂t] = P[N ≥ v1 + c1 | N ≥ v1]P[x̂t = 1] + P[N ≥ v2 + c2 | N ≥ v2]P[x̂t = 0]

Now, we can find a lower bound for these probabilities.

P[N ≥ v1 + c1 | N ≥ v1] ≥ P[N ≥ v1 + |c1|]
P[N ≥ v1]

P[N ≥ v2 + c2 | N ≥ v2] ≥ P[N ≥ v2 + |c2|]
P[N ≥ v2]
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Note. In the above bounds, we have equality when c1 ≥ 0 and c2 ≥ 0 by the definition of conditional
probability. If c1 < 0 or c2 < 0, then the left side essentially asks for the probability that N is greater
than some value given that it is greater than some larger value, so the respective probabilities are just
1. Since we consider the absolute values of c1 and c2 on the right side, that means the right side is
less than or equal to 1. Therefore, the inequality covers both cases.

We can take advantage of the definition of the CDF of the Logistic distribution to find an explicit lower
bound.

P[N ≥ v1 + c1 | N ≥ v1] ≥ P[N ≥ v1 + |c1|]
P[N ≥ v1]

≥ e−η(v1+|c1|)

1 + e−η(v1+|c1|)
1 + e−ηv1

e−ηv1

≥ e−η|c1|

≥ 1− η|c1|

P[N ≥ v2 + c2 | N ≥ v2] ≥ P[N ≥ v2 + |c2|]
P[N ≥ v2]

≥ e−η(v1+|c1|)

1 + e−η(v2+|c2|)
1 + e−ηv2

e−ηv2

≥ e−η|c2|

≥ 1− η|c2|

Thus, we have that:

P[x̂t+1 = x̂t] ≥
1
2(1− η|c1|) + 1

2(1− η|c2|)

= 1− η

2 (|c1|+ |c2|)

Thus, we have that the probability of a leader change is:

P[x̂t+1 = x̂t] ≤
η

2 (|c1|+ |c2|)

Both c1 and c2 can take any value in {−1, 0, 1} since they represent the difference in loss between choosing
0 or 1 in a given round. Therefore, the absolute values of both are upper bounded by 1, which means the
individual probabilities are upper-bounded by η

2 · 2 = η. Now, for the entire summation, we get:

E[R(A)
T ] ≤

T+1∑
t=2

1[x̂t+1 6= x̂t] ≤ ηT

2.3 Putting It All Together

Recalling how we defined RT as the sum of R(A)
T and R

(B)
T in Equation 2, we can now easily bound the

total regret using the linearity of expectation and the bounds from Lemma 1 and Lemma 2.

E[RT ] = E[R(A)
T +R

(B)
T ]

= E[R(A)
T ] + E[R(B)

T ]

≤ ηT + ln 2
η

We want to choose the tightest bound possible for E[RT ], and since we have control over η, we can
optimize the right side over η.

d
dη ηT + ln 2

η
= T − ln 2

η2 = 0
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⇒ η2 = ln 2
T

⇒ η =
√

ln 2
T

Plugging that into our expression for the bound, we see that

E[RT ] ≤ T
√

ln 2
T

+
√

T

ln 2 ln 2

⇒ E[RT ] ≤ 2
√
T ln 2

⇒ E[RT ] .
√
T ln 2

This is a very important result since it shows that the expected value of the regret grows sublinearly (i.e.
o(T )), so we can be sure that the regret when using the FTPL algorithm is still bounded. This also tells
us that the perturbations we choose can give us real benefits by giving FTPL a clearer choice of which
action to choose. Moreover, we also see that in the case that FTL does very well, and perturbations
might actually hurt us, we still also do reasonably well in those circumstances.
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