EE194/290S: ML for Sequential Decision under Uncertainty Fall 2018

Lecture 8: Online Optimization 1
Lecturer: Anant Sahai/Vidya Muthukumar — Scribes: Ashray Manepalli, Wesley Wang

8.1 FTRL and FTPL Recap

As we have seen thus far in our discussions on sequential decision making, multiplicative
weights for the Follow the Leader (FTL) scheme can be formalized in two ways:

1. A optimization problem utilizing entropy regularization, %H (), to pull us towards
more ‘random’ solutions, and

2. A perturbation based approach that adds random perturbation N;, ~ G(0, %) to our
loss.

We analyzed these alternate schemes, Follow the Regularized Leader (FTRL) and
Follow the Perturbed Leader (FTPL) respectively, in lectures 6 and 7. We found that these
schemes get us sub-linear total regret bounds, Ry € O(v/T), which means that average re-
gret is asymptotically pushed to 0.

Recall that in the analyses, regret bounds were proved using the concept of “Leader
Change”: 1[Z;4+1 # @4). This is certainly a powerful method of analyzing discrete problems in
sequential decision making with relatively simple loss functions such as Hamming Distance.
However there are many areas where this method fails, such as sequentially modeling and
predicting continuous variables. In the case of predicting continuous variables, we have to
look at other methods in optimization.

In this lecture scribe, we will begin to cover methods in Online Optimization. In
particular, we will be covering the case of Online Optimization for Linear Loss functions.

8.2 Introduction to Online Optimization

Let’s start off by defining a toy problem for us to analyze.

8.2.1 Defining our problem

Our goal is to make money off of the stock market by buying/selling stocks each day. Each
morning when the market opens, we go over the list of stocks we’re trading, and choose to
either buy or sell some amount of each one, represented as vector w; € W. For example
Wy (1) = 3 means we bought 3 shares of stock i on the morning of day ¢. If wj(j) is negative,
then we shorted stock j on the morning of day ¢. At the end of each day, we sell whatever
stocks we bought, and buy back whatever we shorted. We also have a limit on the magnitude
of stocks one could purchase or short in any given day. This is done to keep the problem
realistic. We don’t have an infinite buying power - the amount we can buy/short must be
bounded.

We make/lose money depending on how much the value of the stock changed over
the course of the day. If on day t we purchased k of stock i (w;(i) = k) and it increased in
value by z dollars, then when we sell at the end of the day we make a profit of kx dollars on
that stock. Similarly, if we shorted k shares of stock i (w;(i) = —k) and it increased in value
by z dollars, then we’d lose money (profit = —kz). To that end, we define another vector

8-1

http://inst.eecs.berkeley.edu/~ee290s/fa18/scribe_notes/EE290S_Lecture_Note_6.pdf
http://inst.eecs.berkeley.edu/~ee290s/fa18/scribe_notes/EE290S_Lecture_Note_7.pdf

Lecture 8: Online Optimization 1 8-2

Zy, representing the change in value of each stock. We observe that total profit is equal to
the sum of element-wise product of the vectors w; and Z;.

Since loss is the opposite of profit, we define loss to be l;(w;) = —(Z;, wy).
Observe that the loss term is a linear function of wy.

8.2.2 Analyzing our problem

For a problem like this, Naive FTL would choose to do the action that is ‘best in hindsight’.
By this formulation, FTL would always pick to buy stocks that increased more than they
decreased in the past, and would pick to short the opposite. Again, we set an arbitrary
bound to the number of stocks trade-able each day. More formally, this allows us to fully
utilize the size of Z. Now, a value of .1 will not be treated the same as .2 for Z. Notice
for this problem, @ = 0 is a safe option, analagous to choosing half 1’s and half 0’s in the
traditional FTL problem.

Similar to the ‘010101..." case in discrete sequence prediction, our naive FTL
scheme can be led into a trap by an adversary. To mitigate the risk, we add on a regu-
1

larization term like we did in FTRL: R(w) = 3. |wl||?, giving us the new scheme:

t
weer = argmin[(} —(Zi, w)) + 5 lwl],

w =1
where our weight at day ¢ + 1 is what would have minimized our regularized total loss over
all previous days.

We observe that all terms of this seem to be convex and differentiable, so we can
find the optimal minimizing w through differentiation with respect to w:

t t
%[(; —<ZZ,'LU>) + % Hw”z] =0 = — ;Zz + %wopt =0

This gets us the following optimal

t
Wy1 = Wopt = 1] Z Zz
i=1

This can be rewritten:

t—1

w1 =nZi+n >, Z;
i=1

wt+1 = Wt + T’Zt

This looks like a single step of some sort of gradient descent. We observe that
in this single step, we can control how much influence Z; has on w;;; by changing n. This
regularizer allows us to control how ‘stubborn’ and resistant our weights w; are to change.
Choosing a small value for n will effectively limit how much our weights can change by in a
single day.

Now that we have a way of modifying and optimizing our weights, how do we go
about bounding regret?

Lecture 8: Online Optimization 1 8-3

8.3 Analysis of Continuous FTL

Ideas:

1. We treat this like a FTPL problem. We can let our regularizer from before, R(w) =
% |w||* act as a perturbation on initial loss .

2. Then, similar to in FTPL analysis, we break regret up into 2 terms:

(a) How our true loss behaves compared to perturbed loss (similar to estimation
error). How do we, across time, behave relative to best in hindsight regularized
loss?

(b) How far perturbed loss in hindsight is from true loss in hindsight (similar to
approximation error).

8.3.1 Big Ideas

We start by modifying our loss with a perturbation, as proposed in idea (1), loss defined as

follows: Rlw): =0
h(w) = {lt(w) >0

Let’s also define u, the single ‘best in hindsight’ choice for weights:
T
u= argminz Iy (u')
L
Now we want to try and analyze regret on our perturbed loss:

Perturbed Regret = Our Perturbed Loss - Best in Hindsight Perturbed Loss
T T
ET = Z lt(wt) — Z lt(U)
t=0 t=0

In FTPL, we conducted our regret analysis using the concept of ‘Leader Change’.
That’s an easy value to work with in discrete settings, but will require more work to figure
out for our continuous setting here.

We observe that on day ¢, w; is the trading decision we made. Since wy;; incor-
porates information about the behaviour of Z;, it essentially ‘corrects’ w;. So, looking back,
wyy1 is the decision we wish we could have made on day ¢. In terms of losses, we see that
Zt(wt) is the loss that we actually incurred on day t. However Zt(wt+1), the loss we would have
incurred if we used w;y; instead of w; on day t, is like a ‘cheating loss’ as we incorporate
information that hasn’t really been revealed yet. From here, we can start to bound our
Regret.

8.3.2 Leader Change Analogy

We're looking to find something analogous to ‘Leader Changes’ here. In FTPL, we measured
the number of times we observed 1[Z;;; # Z¢|. In a continuous setting, we instead find the
comparison of w; 1 and w; on day t to be the continuous analogy to our discrete version from
FTPL. Our goal here, like the discrete case, is to bound our total perturbed regret, and we
hypothesize that it can be bounded by the difference between our perturbed true loss and
our perturbed cheating loss.

Like in FTPL, we claim that:

Lecture 8: Online Optimization 1 8-4

Which is equivalent to saying

tio T (wns) < io I(w)

T .
where > [;(wy1) is our ‘cheating loss’ total.
=0

How do we go about proving this claim? Let’s try it out for some values.

) Intuition: Let T = 0, then lNO(wl) < Zo(u). Since wy is the term that minimizes
lo(w) = R(w) and R(w) has a minimum of 0, we have [y(w;) = 0. Therefore lo(w;) must be
less than or equal to lp(u) = R(u).

Let T = 1, then ly(w;) + 11 (ws) < lo(u)+ 1 (u). An important observation to make
is that wy was chosen by the following scheme:

wy = argminfly(w) + I (w)].
weW

So to actually get that term in the inequality we're faced with, we can add l~0(w2):
lo(wi) + lo(ws) + L (wa) < To(w) + 11 (w) + lo(ws)

By definition,

l~0<w2) + Zl(w2) < Zo(u) + 11 (u)

Subtracting that away, we're left with:

l() (wl) < l()(QUQ)

We know this is true by the definition of w;. Therefore, the inequality for case T'= 1 has
also been shown to be true.
From these base cases, we begin a proof by induction.

Proof: Assume this to be true for 7' = k.
Let’s now try to prove it for T'=k + 1

ktl k1
Z lt(wt—H) < Z lt(u)
t=0 t=
ktl ko . ko
= Z li(wegr) + Z li(wiy2) < Z l(u) + Z li(W2)
t=0 =0 t=0 t=0
ko L . ko
- Z lt<wt+1> + Z lt(wk+2> < Z lt(U) + Z lt<wk+2)
t=0 t=0 =0 t=0
We know
k41 k+1
> h(wig2) < 37 L(u)
t= =

because wy, o is defined to be the minimizer of total losses from 0 to k& + 1.

Lecture 8: Online Optimization 1 8-5

We also have

k k

Dol (wiyr) < 30 Li(wiy2)

t=0 t=0

since w41 is defined to be the minimizer of total losses from 0 to k.
Therefore,

Which was what we wanted.
Thus, we have proved our initial claim.

Now that we have this inequality, we can derive our regret bound.

8.4 Bounding Regret

From before, we showed that:

We recall that at time ¢ = 0, our perturbed loss term is just exactly equal to our perturbation
R(-). As per our assumptions, this perturbation is exactly the approximation error that we
need to 'pay to play the game’.

For all other nonzero time steps, our Regret is bounded by the difference between true and
cheating loss. Similar to the ‘Leader Change’ formulation, the sum of these differences is
just our estimation error.

8.4.1 Bounding estimation error

RgA), our estimation error, is bounded as follows

A - [7
Ry < Z lt(wt) - lt<wt+l)
t=1

Looking at the inner terms of our summation, we observe that we can simplify them.

lt(wt) - lt(wt+1) = —Zt(wt - wt+1) = _Zt(_nzt) = UZtQ

Therefore,

T r. -

> | e(we) = li(wiga) Zntéth

t=1

Therefore we have the following bound on the term resembling estimation error:

T
A
RW < 7
t=

Lecture 8: Online Optimization 1 8-6

8.4.2 Bounding approximation error
Now let’s examine our approximation error. As previously stated, our approximation error

is the same as the 'price we pay’ at timestep ¢ = 0 to 'play the game’. That’s the same as
the difference between modified loss in hindsight and true loss in hindsight.

B
R = R(u) = & |[ul?

Therefore,

T
A B
Ry =R"+ R < llull? +n3 2
t=

However, we still can’t truly bound regret, since we have extra terms: u, Z;. By
formalizing our intuition of how 'markets’ work, we can define bounds for these terms.

Assumptions: Let’s define G and B such that:

e Forallt, ||Z]| <G

e Define B such that w € {u, ||u|| < B}
Then, we have:
Ry < & 497G

Let’s determine the value for n that minimizes our regret bound. Since our R; is bounded
by a convex equation, our minimum will occur if:

%(%ﬁ +nTG?) =0

Then,
B? _
TG? 2z =0
Which gets us the optimal value:
_ B
= Gvar

Thus,
Ry < BGV2T € O(VT)

Observe that as B increases, the magnitude of 'bets’ we're allowed to make in-
creases. Intuitively, if we're capable of making large bets, we’ll need to have a larger step
size to utilize that capacity in reasonable time - we're willing to make large changes if we
know we can afford it.

Similarly, if G is large, this tells us that the market is capable of swinging by large
amounts every day and is more volatile. Intuitively, we’d want to be more conservative in
such a volatile environment to not be led into a trap by an adversary. Consequently, we
observe that for large values of G, our step size is small - we’re stubborn to change in the
face of volatility.

Thus, our total regret is sublinear.

Lecture 8: Online Optimization 1 8-7

Analysis

Do these assumptions mean anything physically? Are they needed?

Well, let’s take a look at each assumption individually. Our first assumption tells
us that Z,; is not too large because

12| < G.

Then, we know that our Signal-to-Noise-Ratio (SNR) is bounded. It’s good to limit our signal
strengths as if we allow very strong signals, we open up the possibility that an adversary can
send very strong signals. This can counteract the ’stubbornness’ we want in our model and
thus, we need a reasonable and bounded SNR to defend against adversaries. However, if we
do increase (G, then we can account for adversarial attacks by reducing our learning rate 7.

Our second assumption limits the number of stocks we can trade per day:
w € {u, [[u]| < B}

We can’t just trade an infinite stocks for a 1 cent profit each. This is not realistic and it
also breaks our model as we can accrue infinite profit. Thus, we bound the number of stocks
we can trade. If B increases, however, then we can trade more and can approach that limit
faster by increasing our learning rate 7. Next time, we’ll look over convexity and linear
approximations for nonlinear losses.

8.4.3 Example

We perform a simple simulation of our stock-trading problem here, in a random but non
adversarial setting. Over ten thousand days, we sample values for Z; from several random
variables, and compute w; using our FTRL scheme.

We then plot the total and average regret, respectively, for this simulation run over several
random variables of different parameters.

In all cases, we observe that total regret appears to behave sublinearly, and that average
regret does seem to tend to zero, as expected.

Total Regret per day

2000000
|:| o
a 2000 4000 6000 8000 10000
1000 |
200
I:l LJ - - e T b s —t—. =
0 2000 4000 6000 8000 10000

Average Total Regret per day

	FTRL and FTPL Recap
	Introduction to Online Optimization
	Defining our problem
	Analyzing our problem

	Analysis of Continuous FTL
	Big Ideas
	Leader Change Analogy

	Bounding Regret
	Bounding estimation error
	Bounding approximation error
	Example

