
EE194/290S: ML for Sequential Decision under Uncertainty Fall 2018

Lecture 9: Online Optimization and Introduction to Games Learning
Lecturer: Anant Sahai Scribes: Ashwin Balakrishna,Ishani Vyas

9.1 Linear Losses in Online Optimization

Consider a state variable that evolves with time, such as the value of a stock, given by
{zt}Tt=1. Suppose one’s goal is to update a weight vector w ∈ W at each timestep in order
to minimize losses in hindsight. The linear loss function

lt(wt) = −ztwt (9.1)

penalizes situations in which zt and wt are of opposite signs. This is akin to penalizing cases
where one buys a stock that is doing poorly or sells a stock that is doing well.

Given all values of the state variable of interest up to time t, {zi}ti=1, a follow the leader
approach (FTL) would simply choose a weight vector wt+1 such that loss in hindsight is min-
imized. From the loss function given by (9.1), it is clear that the choice of w that minimizes
loss in hindsight is:

wt+1 = arg min
w

t∑
i=1

−ziw (9.2)

As shown in last lecture, the above formulation provides no protection against adversarial
examples, since w is not constrained to be small. This motivated a regularized weight update
as shown below:

wt+1 = arg min
w

t∑
i=1

−ziw +
1

2η
||w||2 (9.3)

Optimizing the above expression to minimize w gives the following:

0 =
t∑
i=1

[−zi] +
1

η
w (9.4)

which can be rearranged to obtain:

wt+1 = η
t∑
i=1

zi (9.5)

By the same logic, we see that:

wt = η

t−1∑
i=1

zi (9.6)

Subtracting (9.6) from (9.5) and rearranging yields a weight-update function:

wt+1 = wt + ηzt (9.7)

In the last lecture we analyzed this weight update in detail and found that by choosing
η = B

G
√
2T

and assuming that there are bounds B and G such that

B ≥ ||u|| ∀u ∈ W (9.8)

G ≥ |zt| (9.9)

the total regret of this strategy is bounded above by BG
√

2T . This result shows that even
in an adversarial environment, under linear losses it is possible to achieve average regret

9-1

Lecture 9: Online Optimization and Introduction to Games Learning 9-2

that approaches 0 as T → ∞ subject to bounds on the norm of our weights and the signal
strength of state variable zt.

We show a plot of the average hindsight loss under linear loss for a specific sequence in
Figure 9.1 below.

Figure 9.1: Here, G = 20, T = 50, B = 2. Notice that the average regret (average hindsight
loss after the full 50 timesteps) is significantly lower than the average regret bound, given by
BG
√

2/T = 8. The hindsight loss profile makes sense, since after about just 15 timesteps,
the average hindsight loss starts rapidly decaying as expected.

However, we note that we can recast the weight update in terms of the gradient of the loss
function as well. By observing that ∇wtlt(wt) = −zt we can substitute zt in the update
wt+1 = wt + ηzt:

wt+1 = wt − η∇wtlt(wt) (9.10)

This will be discussed in further detail in the following section.

9.2 Convex Losses in Online Optimization

Now consider a convex loss function, such as squared loss, given by

lt(wt) = ||yt − wtxt||2 (9.11)

This is not a linear loss function, so the regret guarantees that we proved previously may not
hold. However, if we linearize this loss in the neighborhood of wt, then it may be possible
to reuse some of the same techniques.

Suppose we have some wt and then we draw some (xt, yt) from nature. This causes us

Lecture 9: Online Optimization and Introduction to Games Learning 9-3

to incur some loss lt(wt), based on which we seek to determine an updated loss wt+1. For
the loss function (9.11) we can use a first order Taylor expansion to linearly approximate
our loss function in the neighborhood of w:

l̂t(w) = lt(wt) + l′t(wt)(w − wt) (9.12)

As long as this approximation and the bounds in (9.9) are reasonable, it is clear that we can
achieve the same regret bound as the linearized loss formulated above (l̂) as we showed for
linear losses last lecture. For squared loss, we have the following loss function:

l(wt) = ||yt − wtxt||2

Computing ∇wtl(wt) yields the following:

∇wtl(wt) = 2(wtxt − yt)xt (9.13)

This only depends on wt (which we have already assumed is bounded per (9.8)), xt, and
yt. It is also reasonable to assume that xt and yt are bounded, since this basically says that
nature cannot provide us with any individual samples that have such high SNR that there
would be no way to avoid having our predictions be heavily skewed. Thus, we see that under
the above assumptions, our linearized loss function can achieve the same regret bound as
truly linear loss functions. This bound is as follows:

T∑
t=1

[
l̂t(wt)− l̂t(u)

]
≤ O(

√
T) (9.14)

where u ∈ W is the u such that u = arg minu′
∑T

t=1 l̂t(u
′).

This is a good regret bound for linearized loss l̂, but we still need to translate this into
the appropriate regret bound for our original loss function l. Since we constructed l̂t as
follows:

l̂t(w) = lt(wt) + l′t|wt(w − wt)

If we let w = wt in (9.12) then
l̂t(wt) = lt(w)

This allows us to replace l̂t(wt) in (9.14) with lt(wt) to obtain:

T∑
t=1

[
lt(wt)− l̂t(u)

]
≤ O(

√
T)

Furthermore, since we constructed l̂t(w) as a first-order Taylor approximation to lt(w), at
wt, since lt(w) is a convex loss function, we know that since convex functions are always
above their supporting hyperplane, lt(w) ≥ l̂t(w) ∀w. Thus, we can simply replace l̂t(u) with
lt(u) in the above regret bound and still have it hold because lt(u) ≥ l̂t(u) ∀u. This gives
us the following regret bound for convex losses, which is exactly the same as the bound we
obtained for linear losses in the last lecture:

T∑
t=1

[lt(wt)− lt(u)] ≤ O(
√
T)

We show a plot of the average hindsight loss under squared loss for a specific sequence in
Figure 9.2 below.

Lecture 9: Online Optimization and Introduction to Games Learning 9-4

Figure 9.2: Here, G = 25, T = 50, B = 0.25. Notice that the average regret (average hindsight
loss after the full 50 timesteps) is significantly lower than the average regret bound, given
by BG

√
2/T = 1.25. The hindsight loss profile makes sense, since the abrupt change in the

sequence values results in a controlled change in the hindsight loss, which then begins to
decrease thereafter once the sequence reverts to its previous pattern.

Note that throughout the above discussion, we made no assumptions regarding the data
distribution, but only assumed that our weights and loss gradients were bounded.

In showing that we can achieve low regret against convex loss functions, we utilized the
fact that we had already shown that we can achieve low regret against linear loss functions
and our prior knowledge about linear approximators to convex loss functions. However, even
for the sequence prediction setting we implicitly utilized this convenient property of linear
loss functions to achieve low regret.

While doing sequence prediction with FTL, we had a discrete loss function given by lt =
{lt,0, lt,1}. However, under multiplicative weights we instead learned probabilities wt,0 and
wt,1 to determine whether to predict 1 or 0 at timestep t. This gave rise to an expected loss
at timestep t given by lt(w) = [lt,0, lt,1]

−→w . Notice that this loss function is linear. As we
will see, using the wt+1 = wt + ηzt update scheme in a special way will give us exponential
weights again using a technique called mirror descent.

9.3 Mirror Descent

Regularized minimization for convex losses can be interpreted as simply taking a gradient
step in dual space, a process known as Mirror Descent. Surprisingly, regularization leads
to Mirror Descent, and this is a very general framework subsuming many known online

Lecture 9: Online Optimization and Introduction to Games Learning 9-5

algorithms. The intuition behind mirror descent is to adjust gradient updates based on the
problem geometry.

Precisely, for some regularizer R(a), for decisions given by

ˆat+1 = arg min
a∈Rd

(
η

t∑
s=1

∇ls(a) · a+R(a)

)
(9.15)

it can be shown that:
∇R(at+1) = ∇R(at)− η∇lt(at) (9.16)

which can be written as:

ˆat+1 = (∇R)−1(∇R(at)− η∇lt(at) (9.17)

This corresponds to

1. mapping at in primal space S to the corresponding point in dual space ∇R(at),

2. performing a gradient step η∇lt(at) to arrive at ∇R(at+1) in dual space,

3. mapping ∇R(at+1) back to point ˆat+1 in the primal space S,

4. projecting ˆat+1 back to to the original convex set K.

This gives rise to the Mirror Descent algorithm, which is given as follows:

Algorithm 1 Mirror Descent

procedure MirrorDescent
Select a regularizer . This defines the dual space mapping R(a)
loop until convergence criteria are met:

Observe lt(at) from choosing action at.
wt+1 ← (∇R)−1(∇R(at)− η∇lt(at)
at+1 ← arg mina∈ADR(a, wt+1)

Here DR(a, b) defines the Bregman divergence of the mirror map given by regularizer R.

Now that we have established the general principle of Mirror Descent, we can show that expo-
nential weights follow directly from Mirror Descent with the appropriate choice of regularizer
R(a). Suppose we pick a regularizer given by:

R(a) =
k∑
i=1

(ai log ai − ai) (9.18)

It is easy to see that ∇R(u)i = log(ui). Furthermore, for Mirror Descent, we saw earlier that

∇R(at+1,i) = ∇R(at,i)− η∇lt(at)i (9.19)

However, since ∇R(u)i = log(ui), we can see that ∇R(at+1)i = log(at+1,i) and ∇R(at,i) =
log(at). Therefore we can rewrite (9.19) as

log(at+1,i) = log(at)− η∇lt(at)i (9.20)

which can be rearranged to:
at+1,i = at,i e

−η∇lt(at)i (9.21)

Finally, it can be shown that the projection with respect to the Bregman divergence on the
probability simplex {a ∈ Rn

+ :
∑n

i=1 ai = 1} amounts to a simple renormalization. Thus, the
functional form of the above expression for at+1 does not change.

Finally, since at+1,i ∝ wt+1,i, we can formulate our update scheme as follows, giving the
familiar weight update formula for exponential weights:

wt+1,i = at,i e
−η∇lt(at)i (9.22)

Lecture 9: Online Optimization and Introduction to Games Learning 9-6

9.4 Games and Learning Introduction

In 2 player games, we model strategic interactions of both players in some environment. For
now, we focus on single-step games. Here, each player (denoted as Player A and Player B)
must perform an action, drawn from possibly different alphabets (denote these A and B).
The game is defined by a loss matrix for each player, which defines the loss that that player
incurs when player A plays performs action a ∈ A and player B performs action b ∈ B.
Thus, we define the loss matrix for player A as PA(a, b) ∀a ∈ A, b ∈ B and loss matrix for
player B as PB(a, b) ∀a ∈ A, b ∈ B.

We illustrate the implications of certain loss matrices in single-step two-player games be-
low. For simplification, we assume that player A and player B each draw actions from the
alphabet {1, 2}. Furthermore, for compactness, we combine the loss matrices of both players
into a single matrix. Each element of the matrix has a tuple (a, b), where a represents the
loss of player A and b the loss of player B for the combination of actions corresponding to
that matrix entry. Each row of the tables below represents the actions that player A can
perform, while each column represents the actions that player B can perform.

Table 9.1 Dominant Strategy

Player B

1 2

Player A
1 (+1,−) (+1,−)

2 (0,−) (0,−)

For the game corresponding to the loss matrix in Table 9.1, we see that since player A will
always take a lower loss by performing action 2, regardless of the action chosen by player
B, it does not matter what action player B chooses. In situations like this, we call always
playing action 2 player A’s dominant strategy. Thus, player B’s losses are just denoted by
− since player B’s decision making process is irrelevant for player A.

Table 9.2 Natural Cooperation

Player B

1 2

Player A
1 (+1,+1) (−1,−1)

2 (−1,−1) (+1,+1)

For the game corresponding to the loss matrix in Table 9.2, we see that since player A and
player B have the exact same loss matrix, and both obviously want to get a loss of −1, it
is advantageous for the players to simply make opposite action choices. This is clear from
the above loss matrix since when player A chooses action 1 and player B chooses action 2 or
vice-versa, both take a loss of −1, while when they both choose the same action, both take
a loss of +1. Thus, they have a natural incentive to cooperate to ensure that they make
opposite decisions, since doing so will benefit both parties.

Table 9.3 Natural Competition

Player B

1 2

Player A
1 (+1,−1) (−1,+1)

2 (−1,+1) (+1,−1)

For the game corresponding to the loss matrix in Table 9.3, we see that since player A and
player B have the exact opposite loss matrix (sum of losses for any given action choice is 0),
any deterministic strategy will be a poor choice, since if either player knows their opponent’s
strategy, then they can simply choose an action that will minimize their loss at the expense
of the opponent. Thus, this situation lends itself to natural competition.

Lecture 9: Online Optimization and Introduction to Games Learning 9-7

Inspired by this example of natural competition, we define a Nash Equilibrium for a
2 player strategic game as follows. A strategy profile (set of strategies for both players) is
considered a Nash Equilibrium if, given the strategy of the opponent, no player can achieve
a lower loss by changing their strategy. Here, a player’s strategy is defined as a probability
distribution over action choices.

In the natural competition example shown above, {(1
2
, 1
2
), (1

2
, 1
2
)} would be a Nash equilib-

rium since the strategy (1
2
, 1
2
) over action set {1, 2} makes you indifferent to your opponent’s

actions on average, as long as they too are following the same strategy, since both of you
will end up with an average loss of 0.

In general, finding Nash equilibria can be shown to be computationally hard, but this is
not the case for two player, zero-sum games, in which both players have loss matrices that
are exactly in opposition to each other (sum of losses for any given set of action choices is
0), as seen in the natural competition example above. In the next lecture, we will explore
the minimax theorem, which gives a convenient way to efficiently find Nash equilibria for
zero-sum games.

	Linear Losses in Online Optimization
	Convex Losses in Online Optimization
	Mirror Descent
	Games and Learning Introduction

