Perception:
3D Motion and Structure from
Multiple Views or Bundle Adjustment



Extract camera poses and structure from
multiple views of the same scene




.. and an example closer to us




3D reconstruction




Urbanscape project 2006




,Bundelblockausgleichung” is an old problem
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Some times as combination with PnP (resection) if ground control points (green) are known

Figure from photogeo.de



3D model from multiple views

3D-Geofotogrammetrische Aufnahme |:> Ergebnis:
z Entzerrtes und skalierbares 3D-Modell

Bildkoordinaten des

Welt
Koordinaten

Erganzt nach: ajisaka.entopos.co.id



ed point projectionsof p=1...N pointsin f=1... F

Find the 3D rigid transformation|R/, T/ Jand the 3D points
X, = (Xp, Yy, Zp) that best satisfy the projection equations

R\ Xp + RiyYy + RisZp + Ty
Ry Xp + RyYy + RbyZ, + T,

Rngp + R£2Yb + R£3Zp + Ty
R Xp + RbyYp + RbZy + T




Reference frame ambiguity hence we fix the first frame to be the world

frame:
Ri=1 and 71 =0

Even with fixing the first frame, a global scale factor is still present. If we
multiply all 3D points and 1" with the same scale measurements do not
change.

Hence we have 6(F — 1) + 3N — 1 independent unknowns

and 2NV F' equations:

R{| Xp + RI,Y, + R{sZ, + Ty

R Xp + RLY, + R{sZ, + T,

o~ BnXo+ RypYy+ RyZy + T,
! Ry Xp + RYY, + RisZ, + T,

o =
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Reference frame ambiguity hence we fix the first frame to be the world

frame:
Ri=1 and 71 =0

Even with fixing the first frame, a global scale factor is still present. If we
multiply all 3D points and 1" with the same scale measurements do not
change.

Hence we have 6(F — 1) + 3N — 1 independent unknowns

and 2N F' equations:

o Rlep + R{2Yp + R{3Zp + 15
P

Rngp + R§2Yp + R§3Zp + 1%
o~ BnXo+ RypYy+ RyZy + T,
g Rngp + R£2Y;p + R§3Zp + 7%




If equations are independent (not always) then

2NF > 6F 43N — 7

For two frames, it was already known that V > 5.

For three frames, N > 4.



Bundle Adjustment is the solution of this problem as nonlinear
least-squares:

argmin e C e

RI TS X,

minimized with respect to all 6(F — 1) motions and 3N — 1 structure
unknowns, where € is the error vector

el — o R, Xp+RI,Yp+RI3Zp+Ts | f Ry Xp+R}Yp+RI,Zp+T,y
P RLXp+RLYp+RLZp+T: 7P RL Xp+RLYp+RE, Zp+Te

and C' is its error covariance. We will continue with the assumption that

C =1



Bundle Adjustment is the solution of this problem as nonlinear
least-squares:

argmin e C e

RS T X,

minimized with respect to all 6(F — 1) motions and 3N — 1 structure
unknowns, where € is the error vector

T ( [ R{1X'P+R{2YP+R{SZP+T$ [ R£1XP+R£2YP+R£3ZP+ Ty

P RLXp+RLYp+RLZp+T: 7P RL Xp+RLYp+RE, Zp+Te

and C' is its error covariance. We will continue with the assumption that

C =1



Basics of nonlinear minimization
Call the objective function ®(u) = e(u)’e(u).

Given a starting value for the vector of unknowns u we iterate with steps
Aw by locally fitting a quadratic function to ®(u):

where V® is the gradient and H is the Hessian of ®.

The minimum of this quadratic is at Awu satisfying

Héu = —-Vo(u)



Basics of nonlinear minimization
Call the objective function ®(u) = e(u)’e(u).

Given a starting value for the vector of unknowns u we iterate with steps
Aw by locally fitting a quadratic function to ®(u):

1
®(u+ Au) = ®(u) + Aul VI(u) + §AuTH(u)Au
where V® is the gradient and H is the Hessian of ®.

The minimum of this quadratic is at Awu satisfying

Héu = —-Vo(u)
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The minimum of this quadratic is at Awu satisfying

Héu = —-V&(u)

Vs the green gradient descent iteration.



If ®(u) = e(u)?'e(u) then

where the Jacobian J consists of elements

O¢;

Jij B 8’0‘,3’

and the Hessian reads

_zz(veﬁ )Wei(u)” —I—Ei(u)gzeg) ( ()T J(u) +Ze@

by omitting quadratic terms inside the Hessian.




If ®(u) = e(u)Te(u) then

Vo = QZ 6 (u)Vei(u)! = J(u)le

where the Jacobian J consists of elements

O¢;

Jij B 8’U,j

and the Hessian reads

by omitting quadratic terms inside the Hessian.



If ®(u) = e(u)?'e(u) then

Vo = 22 6 (u)Vei(u)! = J(u)le

where the Jacobian J consists of elements

O¢;

Jij B 8uj

and the Hessian reads

0%¢;

— 22 (VEZ )Wei(u)! + €(u) 52

by omitting quadratic terms inside the Hessian.



This yields the Gauss-Newton lteration
Au=—(JET)tJte
involving the inversion of a (6F + 3N — 7) x (6F 4+ 3N — 7) matrix.

Bundle adjustment is about the “art” of inverting efficiently (JZ.J).



Let us split the unknown vector u(a,b) into u = (a,b) (following SBA
paper by Lourakis):

e 6F — 6 motion unknowns a

e 3P — 1 structure unknonws b

and we will explain this case better if we assume two motion unknowns a;
and ao corresponding to 2 frames, and 3 unknown points by, bo, b3.

For keeping symmetry in writing we do not deal here with the global
reference and the global scale ambiguity.



The Jacobian for 2 frames and 3 points has 6 pairs of rows (one pair for
each image projection) and 15 columns/unknowns: columns/unknowns:

\

B{ 0 O

B2 0 0

7 Oe _ 0 By 0
d(a,b) 0 B2 0

0 0 B!

0 0 B2

¥ i

motion | Structure /

with A matrices being 2 x 6 and B matrices being 2 x 3 being Jacobians
of the error e{ of the projection of the i-th point in the f-th frame.



The Jacobian for 2 frames and 3 points has 6 pairs of rows (one pair for
each image projection) and 15 columns/unknowns: columns/unknowns:

A 0

0 A?

7 Oe | A3 O
~ 9(a,b) | 0 A3
Al 0

0 A3

>

gt

\ motion | Structure

with A matrices being 2 X 6 and B matrices being 2 x 3 being Jacobians
of the error e{ of the projection of the i-th point in the f-th frame.



with the block diagonals for motion and structure separated.

Denoting
U; 0 0 Vi 000 A%
. - ._ |0 vi 0o o0 !
U’ = 0 U2 0 ,V = « W = W12
0 0O V; 0
0 0 Uj ‘ Wiz

0 0 0



We observe now a pattern emerging

(U
0
JIJ =

with the block diagonals for motion and structure separated.

Denoting
‘ Vi
Uy o 0 0
0 0 Uj
‘ 0

0 Wi Wi Wi

U2 W2 Wi w3

0 0 0 W W

Vi o 0w [wh wa
0 Vi O Wiz Wa
0 0 Vi ‘ ‘




Let us rewrite the basic iteration

a5

and premultiply with

I wyv-1i U W
0 I wT v




Let us rewrite the basic iteration

Au=—(JT)1Jte

U W)\ (Aa\ (€,
wt v )\Ab)  \g
and premultiply with

I WV W\l U W)\ [(Aad\ |[I WV
0 I wT v )\Ab) |\0o I

a5



Let us rewrite the basic iteration

Au=—(JT)1Jte

dS

and premultiply with

(U w) (Aa)_(f Wy

0 I



Motion parameters can be updated separately by inverting a 6F' x 6F
matrix:

(U-WVIWhHAa=¢€, — WV,




Motion parameters can be updated separately by inverting a 6F X 6F
matrix:

U -wWVIWwhHAa=¢€ — WV 1€

Each 3D point can be be updated separately by inverting a 3x 3 matrix V:

If a point 7 does not appear in frame f then matrices Azf and Bg are set to
Zero.



Bundler© Structure from Motion for Unordered Image
Collections

We will see how it will be used in Visual Odometry as well |





