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E= [t] R How to decompose the essential matrix to rotation and translation?

Essential matrix
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2.2 Camera Pose Extraction

Goal Given E, enumerate four camera pose configurations, (C1,R1), (Cq, R2), (C3,R3), and (Cy4, Ry)
where C € R? is the camera center and R € SO(3) is the rotation matrix, i.e., P = KR, [ I3 —C } :

[Cset Rset] = ExtractCameraPose(E)

(INPUT) E: essential matrix

(OUTPUT) Cset and Rset: four configurations of camera centers and rotations, i.e., Cset{i}=C;

and Rset{i}=R,.
There are four camera pose configurations given an essential matrix. Let E = UDV' and W =
0 -1 0

1 0 0 |. The four configurations are enumerated below:

0 0 1

1. C; =U(;,3) and Ry = UWVT

2. Co = —U(;,3) and R, = UWVT
3. C3=U(;,3) and R3 = UW'VT
4. C4=-U(;,3) and Ry, = UWTVT,

Note that the determinant of a rotation matrix is one. If det(R) = —1, the camera pose must be
corrected, i.e., C +— —C and R + —R.
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Point Triangulation
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% Intrinsic parameter
K1 =12329.558 0 1141.452; 0 2329.558 927.052; 0 0 1];
K2 =1[2329.558 0 1241.731; 0 2329.558 927.052; 0 0 1];

% Camera matrices

P1 =K1 * [eye(3) zeros(3,1)];
C =[1;0;0];

P2 = K2 * [eye(3) -C];

X =
% Correspondences 0.7111
x1 =[1382;986;1]; 0.1743
x2 = [1144:986;1]; 6.8865
skew1 = Vec2Skew(x1); 1.0000

skew?2 = Vec2Skew(x2);

% Solve

A = [skew1*P1; skew2*P2];
[u,d,v] = svd(A);

X = v(;,end)/v(end,end);

function skew = Vec2Skew(v)
skew = [0 -v(3) v(2); v(3) 0 -v(1); -v(2) v(1) Q];



Point Triangulation



3.1 Linear Triangulation

Goal Given two camera poses, (C1,R1) and (Cz,R2), and correspondences x; <> X2, triangulate 3D
points using linear least squares:

X = LinearTriangulation(K, C1, R1, C2, R2, x1, x2)

(INPUT) C1 and R1: the first camera pose
(INPUT) C2 and R2: the second camera pose

(INPUT) x1 and x2: two N X 2 matrices whose row represents correspondence between the first
and second images where N is the number of correspondences.

(OUTPUT) X: N x 3 matrix whose row represents 3D triangulated point.



Camera pose disambiguation via point triangulation
Four configurations:
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3.2 Camera Pose Disambiguation

Goal Given four camera pose configuration and their triangulated points, find the unique camera
pose by checking the cheirality condition—the reconstructed points must be in front of the cameras:

[C R X0] = DisambiguateCameraPose(Cset, Rset, Xset)

(INPUT) Cset and Rset: four configurations of camera centers and rotations
(INPUT) Xset: four sets of triangulated points from four camera pose configurations
(OUTPUT) C and R: the correct camera pose

(OUTPUT) XO0: the 3D triangulated points from the correct camera pose

The sign of the Z element in the camera coordinate system indicates the location of the 3D point
with respect to the camera, i.e., a 3D point X is in front of a camera if (C,R) if r3(X — C) > 0
where r3 is the third row of R. Not all triangulated points satisfy this condition due to the presence
of correspondence noise. The best camera configuration, (C,R,X) is the one that produces the
maximum number of points satisfying the cheirality condition.



Third person (world) perspective

B § R'=R'
{C} ‘< t_ C=-R't
* > =K[R | t] =-R't
Camera center in world coordinate _K :R | -RC]
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Camera center seen from world coordinate system
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