

Recovery of R,T from Essential Matrix

Mike

$$
\begin{aligned}
& \mathbf{x}_{2}^{\top} \mathbf{F x}_{1}=0 \\
& \text { where } \mathbf{F}=\mathbf{K}^{\top} \mathbf{E K}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{1}= \\
& \text { Bob }
\end{aligned}
$$

$P_{2}=K\left[\begin{array}{ll}R & t\end{array}\right]$
Mike

$\mathrm{E}=\mathrm{K}^{\top} \mathrm{FK}$

 $\mathrm{P}_{1}=$Bob

0]
$P_{2}=K\left[\begin{array}{ll}R & t\end{array}\right]$
Mike
$E=[t]_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation?
Essential matrix (rank 2)

$\mathbf{E}=[\mathbf{t}]_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation?

Essential matrix (rank 2)

$\mathbf{t}:$ Epipole in in imae 2 because $\mathbf{P}_{2}\left[\begin{array}{l}\mathbf{0} \\ 1\end{array}\right]=[\mathbf{R} \mid \mathbf{t}]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\mathbf{t}$
$E=[t]_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation?
Essential matrix (rank 2)

$$
\mathbf{P}_{1}=\left[\begin{array}{l|l}
\mathbf{I}_{3 \times 3} & \mathbf{O}_{3}
\end{array}\right] \quad \mathbf{P}_{2}=[\mathbf{R} \mid \mathbf{t}]
$$

\mathbf{t} : Epipole in image 2 because $\mathbf{P}_{2}\left[\begin{array}{l}\mathbf{0} \\ 1\end{array}\right]=[\mathbf{R} \mid \mathbf{t}]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\mathbf{t}$
$\mathbf{t}^{\top} \mathbf{E}=\mathbf{0}$: Left nullspace of the essential matrix is the epipole in image 2.
$\mathrm{E}=[\mathrm{t}]_{\times} \mathrm{R}$ How to decompose the essential matrix to rotation and translation?
Essential matrix (rank 2)
C

$$
\mathbf{P}_{1}=\left[\mathbf{I}_{3 \times 3} \mid \mathbf{0}_{3}\right] \quad \mathbf{P}_{2}=[\mathbf{R} \mid \mathbf{t}]
$$

\mathbf{t} : Epipole in image 2 because $\mathbf{P}_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]=[\mathbf{R} \mid \mathbf{t}]\left[\begin{array}{l}\mathbf{0} \\ 1\end{array}\right]=\mathbf{t}$
$\mathbf{t}^{\top} \mathbf{E}=\mathbf{0}$: Left nullspace of the essential matrix is the epipole in image 2.
$\rightarrow \mathbf{t}=\mathbf{u}_{3}$, or $-\mathbf{u}_{3}$ where $\mathbf{U}=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]$ and $\mathbf{E}=\mathbf{U}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \mathbf{V}^{\top}$

$\mathrm{E}=[\mathrm{t}]_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation?

Essential matrix

$$
\mathbf{P}_{1}=\left[I_{3 \times 3} \mid \mathbf{O}_{3}\right]
$$

$$
\mathbf{P}_{2}=[\mathbf{R} \mid \mathrm{t}]
$$

$$
\mathbf{E}=\mathbf{U}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \boldsymbol{V}^{\top}
$$

$\mathrm{E}=[\mathrm{t}]_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation?

Essential matrix

$$
\mathbf{P}_{1}=\left[I_{3 \times 3} \mid \mathbf{O}_{3}\right]
$$

$$
\mathbf{P}_{2}=[\mathbf{R} \mid \mathrm{t}]
$$

$$
\mathbf{E}=\mathbf{U}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \boldsymbol{V}^{\top}=[\mathbf{t}]_{\times} \mathbf{R}
$$

$E=[t] \times R$ How to decompose the essential matrix to rotation and translation?

Essential matrix

$$
\mathbf{P}_{1}=\left[\mathbf{I}_{3 \times 3} \mid \mathbf{0}_{3}\right] \quad \mathbf{P}_{2}=[\mathbf{R} \mid \mathbf{t}]
$$

$$
\left.\mathbf{E}=\mathbf{U}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{V}^{\top}=[\mathbf{t}]_{\times} \mathbf{R}=\left(\mathbf{U}\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \mathbf{U}^{\top}\right)\left(\mathbf{U Y} \mathbf{V}^{\top}\right)
$$

$$
\text { where } \mathbf{U}=\left[\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{t}
\end{array}\right]
$$

$\mathrm{E}=[\mathrm{t}]_{\times} \mathrm{R}$ How to decompose the essential matrix to rotation and translation?
Essential matrix

$$
\begin{aligned}
& \left.\mathbf{E}=\mathbf{U}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{V}^{\top}=[\mathbf{t}]_{\times} \mathbf{R}=\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \mathbf{U}^{\top}\right) \begin{array}{l}
\text { How do we set } \mathbf{Y} \text { ? } \\
\left(\mathbf{U Y V}^{\top}\right)
\end{array} \\
& \text { where } \mathbf{U}=\left[\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} & t
\end{array}\right]
\end{aligned}
$$

$\mathrm{E}=[\mathrm{t}]_{\times} \mathrm{R}$ How to decompose the essential matrix to rotation and translation?
Essential matrix

$\mathbf{E}=\mathbf{U}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \mathbf{V}^{\top}=[\mathbf{t}]_{\times} \mathbf{R}=\mathbf{U}\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \mathbf{Y} \mathbf{V}^{\top}$
How do we set \mathbf{Y} ?

$$
\therefore\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] Y
$$

$\mathrm{E}=[\mathrm{t}]_{\times} \mathrm{R}$ How to decompose the essential matrix to rotation and translation?
Essential matrix

$$
\begin{aligned}
\mathbf{E}=\mathbf{U}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{V ^ { \top }}=[\mathbf{t}]_{\times} \mathbf{R} & =\mathbf{U}\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{Y V}^{\top} \\
\therefore \mathbf{Y} & =\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \text {, or }\left[\begin{array}{lll}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]^{\top}
\end{aligned}
$$

How do we set \mathbf{Y} ?
$\mathrm{E}=[\mathrm{t}]_{\times} \mathrm{R}$ How to decompose the essential matrix to rotation and translation?
Essential matrix

$\mathbf{t}=\mathbf{u}_{3}$, or $-\mathbf{u}_{3} \quad \mathbf{R}=\mathbf{U}\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \mathbf{V}^{\top}$, or $\mathbf{U}\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]^{\top} \mathbf{V}^{\top}$
where $\quad \mathbf{E}=\mathbf{U D V}^{\top} \quad \mathbf{U}=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathrm{t}\end{array}\right]$

$\mathbf{E}=[\mathbf{t}]_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation?

Essential matrix

Four configurations:

$$
\mathbf{P}_{2}=\left[\mathbf{U Y V}^{\top} \mid \mathbf{u}_{3}\right] \text {, or }\left[\mathbf{U Y}^{\top} \mathbf{V}^{\top} \mid \mathbf{u}_{3}\right] \text {, or }\left[\mathbf{U Y V}^{\top} \mid-\mathbf{u}_{3}\right] \text {, or }\left[\mathbf{U Y}^{\top} \mathbf{V}^{\top} \mid-\mathbf{u}_{3}\right]
$$

$E=[t]_{\times} R$ How to decompose the essential matrix to rotation and translation?

Essential matrix
Four configurations:

$E=[t]_{\times} R$ How to decompose the essential matrix to rotation and translation?

Essential matrix
Four configurations: can be resolved by point triangulation.

Fig. 9.12. The four possible solutions for calibrated reconstruction from E. Between the left and righ sides there is a baseline reversal. Benven the top and botton mows cantera B rotates 180° about the baseline. Note, only in (a) is the reconstructed point in front of both caneras.

Result 9.19. For a given essential matrix $\mathrm{E}=\mathrm{U} \operatorname{diag}(1,1,0) \mathrm{V}^{\top}$, and first camera matrix $\mathrm{P}=[\mathrm{I} \mid \mathbf{0}]$, there are four possible choices for the second camera matrix P^{\prime}, namely

$$
P^{\prime}=\left[U W V^{\top} \mid+\mathbf{u}_{3}\right] \text { or }\left[U W V^{\top} \mid-\mathbf{u}_{3}\right] \text { or }\left[U W^{\top} V^{\top} \mid+\mathbf{u}_{3}\right] \text { or }\left[U W^{\top} V^{\top} \mid-\mathbf{u}_{3}\right] .
$$

(only one solution where points is in front of both cameras)

2.2 Camera Pose Extraction

Goal Given \mathbf{E}, enumerate four camera pose configurations, $\left(\mathbf{C}_{1}, \mathbf{R}_{1}\right),\left(\mathbf{C}_{2}, \mathbf{R}_{2}\right),\left(\mathbf{C}_{3}, \mathbf{R}_{3}\right)$, and $\left(\mathbf{C}_{4}, \mathbf{R}_{4}\right)$ where $\mathbf{C} \in \mathbb{R}^{3}$ is the camera center and $\mathbf{R} \in S O(3)$ is the rotation matrix, i.e., $\mathbf{P}=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}\mathbf{I}_{3 \times 3} & -\mathbf{C}\end{array}\right]$:
[Cset Rset] = ExtractCameraPose(E)
(INPUT) E: essential matrix (OUTPUT) Cset and Rset: four configurations of camera centers and rotations, i.e., $\operatorname{Cset}\{\mathbf{i}\}=\mathbf{C}_{i}$ and $\operatorname{Rset}\{\mathrm{i}\}=\mathbf{R}_{i}$.

There are four camera pose configurations given an essential matrix. Let $\mathbf{E}=\mathbf{U D V}^{\boldsymbol{\top}}$ and $\mathbf{W}=$ $\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. The four configurations are enumerated below:

1. $\mathbf{C}_{1}=\mathbf{U}(:, 3)$ and $\mathbf{R}_{1}=\mathbf{U W} \mathbf{V}^{\top}$
2. $\mathbf{C}_{2}=-\mathbf{U}(:, 3)$ and $\mathbf{R}_{2}=\mathbf{U W} \mathbf{V}^{\top}$
3. $\mathbf{C}_{3}=\mathbf{U}(:, 3)$ and $\mathbf{R}_{3}=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top}$
4. $\mathbf{C}_{4}=-\mathbf{U}(:, 3)$ and $\mathbf{R}_{4}=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top}$.

Note that the determinant of a rotation matrix is one. If $\operatorname{det}(\mathbf{R})=-1$, the camera pose must be corrected, i.e., $\mathbf{C} \leftarrow-\mathbf{C}$ and $\mathbf{R} \leftarrow-\mathbf{R}$.

Point Triangulation

× 2 D correspondences

Point Triangulation

$\mathbf{x} 2 \mathrm{D}$ correspondences

3D point

$$
\text { - } \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right]
$$

2D projection

$$
\eta \boldsymbol{x}_{1}=\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]
$$

3D camera pose
$P_{1} \in \mathbb{R}^{3 \times 4}$

Point Triangulation

Point Triangulation

Point Triangulation

$$
\begin{aligned}
\lambda\left[\begin{array}{c}
\mathbf{x}_{1} \\
1
\end{array}\right]=\mathbf{P}_{1}\left[\begin{array}{l}
X \\
1
\end{array}\right] \longrightarrow & {\left[\begin{array}{c}
\mathbf{x}_{1} \\
1
\end{array}\right]_{x}\left[\begin{array}{l}
X \\
1
\end{array}\right]=0 } \\
& {\left[\begin{array}{c}
\mathbf{x}_{2} \\
1
\end{array}\right]_{x} \mathbf{P}_{2}\left[\begin{array}{c}
X \\
1
\end{array}\right]=0 }
\end{aligned}
$$

Point Triangulation

$$
\begin{aligned}
\lambda\left[\begin{array}{c}
\mathbf{x}_{1} \\
1
\end{array}\right]=P_{1}\left[\begin{array}{l}
X \\
1
\end{array}\right] \longrightarrow & {\left[\begin{array}{c}
X_{1} \\
1
\end{array}\right]_{X} P_{1}\left[\begin{array}{l}
X \\
1
\end{array}\right]=0 } \\
& {\left[\begin{array}{c}
x_{2} \\
1
\end{array}\right]_{x} P_{2}\left[\begin{array}{l}
X \\
1
\end{array}\right]=0 }
\end{aligned}
$$

Point Triangulation

$$
\begin{aligned}
\lambda\left[\begin{array}{c}
\mathbf{x}_{1} \\
1
\end{array}\right]=\mathbf{P}_{1}\left[\begin{array}{l}
\mathbf{X} \\
1
\end{array}\right] \longrightarrow & {\left[\begin{array}{c}
\mathbf{x}_{1} \\
1
\end{array}\right]_{\mathbf{x}} \mathbf{P}_{1}\left[\begin{array}{l}
\mathrm{X} \\
1
\end{array}\right]=0 } \\
& {\left[\begin{array}{c}
\mathbf{x}_{2} \\
1
\end{array}\right]_{\mathbf{x}}\left[\begin{array}{c}
\mathbf{P} \\
1
\end{array}\right]=0 }
\end{aligned}
$$

Point Triangulation

Point Triangulation


```
% Intrinsic parameter
K1 = [2329.558 0 1141.452; 0 2329.558 927.052; 0 0 1];
K2 = [2329.558 0 1241.731; 0 2329.558 927.052; 0 0 1];
% Camera matrices
P1 = K1 * [eye(3) zeros(3,1)];
C = [1;0;0];
P2 = K2 * [eye(3) -C];
% Correspondences
X=
    0 . 7 1 1 1
x1 = [1382;986;1];
x2 = [1144;986;1];
0.1743
skew1 = Vec2Skew(x1);
    6.8865
< 1.0000
skew2 = Vec2Skew(x2);
% Solve
A = [skew1*P1; skew2*P2];
[u,d,v] = svd(A);
X = v(:,end)/v(end,end);
function skew = Vec2Skew(v)
skew = [0 -v(3) v(2); v(3) 0-v(1); -v(2) v(1) 0];
```


Point Triangulation

区 \square

3.1 Linear Triangulation

Goal Given two camera poses, $\left(\mathbf{C}_{1}, \mathbf{R}_{1}\right)$ and $\left(\mathbf{C}_{2}, \mathbf{R}_{2}\right)$, and correspondences $\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}$, triangulate 3D points using linear least squares:
$\mathrm{X}=$ LinearTriangulation(K, C1, R1, C2, R2, $\mathrm{x} 1, \mathrm{x} 2$)
(INPUT) C1 and R1: the first camera pose
(INPUT) C2 and R2: the second camera pose
(INPUT) x1 and x2: two $N \times 2$ matrices whose row represents correspondence between the first and second images where N is the number of correspondences.
(OUTPUT) X: $N \times 3$ matrix whose row represents 3 D triangulated point.

Camera pose disambiguation via point triangulation

Four configurations:

3.2 Camera Pose Disambiguation

Goal Given four camera pose configuration and their triangulated points, find the unique camera pose by checking the cheirality condition-the reconstructed points must be in front of the cameras:
[C R XO] = DisambiguateCameraPose(Cset, Rset, Xset)
(INPUT) Cset and Rset: four configurations of camera centers and rotations
(INPUT) Xset: four sets of triangulated points from four camera pose configurations
(OUTPUT) C and R: the correct camera pose
(OUTPUT) X0: the 3D triangulated points from the correct camera pose
The sign of the Z element in the camera coordinate system indicates the location of the 3D point with respect to the camera, i.e., a 3 D point \mathbf{X} is in front of a camera if (\mathbf{C}, \mathbf{R}) if $\mathbf{r}_{3}(\mathbf{X}-\mathbf{C})>0$ where \mathbf{r}_{3} is the third row of \mathbf{R}. Not all triangulated points satisfy this condition due to the presence of correspondence noise. The best camera configuration, ($\mathbf{C}, \mathbf{R}, \mathbf{X}$) is the one that produces the maximum number of points satisfying the cheirality condition.

Third person (world) perspective

Camera center seen from world coordinate system

