

Recovery of R,T from Essential Matrix

Mike

Bob

 $\mathbf{E} = \begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation? Essential matrix (rank 2)

 $\mathbf{P}_2 = [\mathbf{R} \mid \mathbf{t}]$

 $\mathbf{P}_{1} = \begin{bmatrix} \mathbf{I}_{3\times3} & | \mathbf{0}_{3} \end{bmatrix}$

 $\mathbf{t}^{\mathsf{T}}\mathbf{E} = \mathbf{0}$: Left nullspace of the essential matrix is the epipole in image 2.

Four configurations:

 $\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{Y}\mathbf{V}^{\mathsf{T}} \mid \mathbf{u}_{3} \end{bmatrix}, \text{ or } \begin{bmatrix} \mathbf{U}\mathbf{Y}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}} \mid \mathbf{u}_{3} \end{bmatrix}, \text{ or } \begin{bmatrix} \mathbf{U}\mathbf{Y}\mathbf{V}^{\mathsf{T}} \mid -\mathbf{u}_{3} \end{bmatrix}, \text{ or } \begin{bmatrix} \mathbf{U}\mathbf{Y}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}} \mid -\mathbf{u}_{3} \end{bmatrix}$

$\mathbf{E} = \begin{bmatrix} t \end{bmatrix}_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation?

Essential matrix

Four configurations:

$\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R}$ How to decompose the essential matrix to rotation and translation?

Essential matrix

Four configurations: can be resolved by point triangulation.

Fig. 9.12. The four possible solutions for calibrated reconstruction from E. Between the left and right sides there is a baseline reversal. Between the top and bottom rows camera B rotates 180° about the baseline. Note, only in (a) is the reconstructed point in front of both cameras.

Result 9.19. For a given essential matrix $E = U \operatorname{diag}(1, 1, 0) V^T$, and first camera matrix $P = [I \mid 0]$, there are four possible choices for the second camera matrix P', namely

 $P' = [UWV^{\mathsf{T}} | + \mathbf{u}_3] \text{ or } [UWV^{\mathsf{T}} | - \mathbf{u}_3] \text{ or } [UW^{\mathsf{T}}V^{\mathsf{T}} | + \mathbf{u}_3] \text{ or } [UW^{\mathsf{T}}V^{\mathsf{T}} | - \mathbf{u}_3].$

(only one solution where points is in front of both cameras)

2.2 Camera Pose Extraction

Goal Given **E**, enumerate four camera pose configurations, $(\mathbf{C}_1, \mathbf{R}_1)$, $(\mathbf{C}_2, \mathbf{R}_2)$, $(\mathbf{C}_3, \mathbf{R}_3)$, and $(\mathbf{C}_4, \mathbf{R}_4)$ where $\mathbf{C} \in \mathbb{R}^3$ is the camera center and $\mathbf{R} \in SO(3)$ is the rotation matrix, i.e., $\mathbf{P} = \mathbf{KR} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{C} \end{bmatrix}$:

[Cset Rset] = ExtractCameraPose(E)

(INPUT) E: essential matrix

(OUTPUT) Cset and Rset: four configurations of camera centers and rotations, i.e., $Cset{i}=C_i$ and $Rset{i}=R_i$.

There are four camera pose configurations given an essential matrix. Let $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ and $\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. The four configurations are enumerated below:

1.
$$\mathbf{C}_1 = \mathbf{U}(:,3)$$
 and $\mathbf{R}_1 = \mathbf{U}\mathbf{W}\mathbf{V}^{\mathsf{T}}$
2. $\mathbf{C}_2 = -\mathbf{U}(:,3)$ and $\mathbf{R}_2 = \mathbf{U}\mathbf{W}\mathbf{V}^{\mathsf{T}}$
3. $\mathbf{C}_3 = \mathbf{U}(:,3)$ and $\mathbf{R}_3 = \mathbf{U}\mathbf{W}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}$
4. $\mathbf{C}_4 = -\mathbf{U}(:,3)$ and $\mathbf{R}_4 = \mathbf{U}\mathbf{W}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}$.

Note that the determinant of a rotation matrix is one. If $det(\mathbf{R}) = -1$, the camera pose must be corrected, i.e., $\mathbf{C} \leftarrow -\mathbf{C}$ and $\mathbf{R} \leftarrow -\mathbf{R}$.

× 2D correspondences

 $\lambda \begin{vmatrix} \mathbf{x}_1 \\ 1 \end{vmatrix} = \mathbf{P}_1 \begin{vmatrix} \mathbf{X} \\ 1 \end{vmatrix}$

× 2D correspondences ,3D point Χ X = Ŷ Ζ 2D projection U₁ $\mathbf{X}_1 =$ 3D camera pose $\mathbf{P}_1 \in \mathbb{R}^{3 \times 4}$

$$\lambda \begin{bmatrix} \mathbf{x}_1 \\ 1 \end{bmatrix} = \mathbf{P}_1 \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{x}_1 \\ 1 \end{bmatrix}_{\times} \mathbf{P}_1 \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = \mathbf{0}$$

Cross product between two parallel vectors equals to zero.

× 2D correspondences ,3D point Χ X = Ŷ Ζ 2D projection U_1 $x_1 =$ 3D camera pose **P**₂ $\mathbf{P}_{1} \in \mathbb{R}^{3 \times 4}$

X₁

X₂

 \mathbf{P}_1

P₂

X

= 0

× 2D correspondences ,3D point Χ X = Ŷ Ζ 2D projection U_1 $\mathbf{X}_1 =$ 3D camera pose **P**₂ $\mathbf{P}_{1} \in \mathbb{R}^{3 \times 4}$

Least squares if $F \ge 2$

$$\mathbf{P}_{1} = \mathbf{K}_{1} \begin{bmatrix} \mathbf{I}_{3\times3} & \mathbf{0}_{3} \end{bmatrix} \qquad \qquad \mathbf{P}_{2} = \mathbf{K}_{2} \begin{bmatrix} \mathbf{I}_{3\times3} & -\mathbf{C} \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

```
% Intrinsic parameter
K1 = [2329.558 0 1141.452; 0 2329.558 927.052; 0 0 1];
K2 = [2329.558 0 1241.731; 0 2329.558 927.052; 0 0 1];
```

```
% Camera matrices

P1 = K1 * [eye(3) zeros(3,1)];

C = [1;0;0];

P2 = K2 * [eye(3) -C];
```

```
% Correspondences
x1 = [1382;986;1];
x2 = [1144;986;1];
skew1 = Vec2Skew(x1);
skew2 = Vec2Skew(x2);
```

% Solve A = [skew1*P1; skew2*P2]; [u,d,v] = svd(A); X = v(:,end)/v(end,end);

function skew = Vec2Skew(v)skew = [0 - v(3) v(2); v(3) 0 - v(1); -v(2) v(1) 0]; X = 0.7111 0.1743 6.8865 1.0000

3.1 Linear Triangulation

Goal Given two camera poses, (C_1, R_1) and (C_2, R_2) , and correspondences $\mathbf{x}_1 \leftrightarrow \mathbf{x}_2$, triangulate 3D points using linear least squares:

X = LinearTriangulation(K, C1, R1, C2, R2, x1, x2)

(INPUT) C1 and R1: the first camera pose

(INPUT) C2 and R2: the second camera pose

(INPUT) x1 and x2: two $N \times 2$ matrices whose row represents correspondence between the first and second images where N is the number of correspondences.

(OUTPUT) X: $N \times 3$ matrix whose row represents 3D triangulated point.

Camera pose disambiguation via point triangulation

Four configurations:

3.2 Camera Pose Disambiguation

Goal Given four camera pose configuration and their triangulated points, find the unique camera pose by checking the *cheirality* condition—the reconstructed points must be in front of the cameras:

[C R X0] = DisambiguateCameraPose(Cset, Rset, Xset)

(INPUT) Cset and Rset: four configurations of camera centers and rotations(INPUT) Xset: four sets of triangulated points from four camera pose configurations(OUTPUT) C and R: the correct camera pose

(OUTPUT) X0: the 3D triangulated points from the correct camera pose

The sign of the Z element in the camera coordinate system indicates the location of the 3D point with respect to the camera, i.e., a 3D point X is in front of a camera if (\mathbf{C}, \mathbf{R}) if $\mathbf{r}_3(\mathbf{X} - \mathbf{C}) > 0$ where \mathbf{r}_3 is the third row of **R**. Not all triangulated points satisfy this condition due to the presence of correspondence noise. The best camera configuration, $(\mathbf{C}, \mathbf{R}, \mathbf{X})$ is the one that produces the maximum number of points satisfying the cheirality condition.

