Lecture /
Multi-view geometry

e The SFM problem

e Affine SFM

e Perspective SFM

e Self-calibration

e Applications Reading:

[HZ] Chapter 10 “3D reconstruction of cameras and structure”
Chapter 18 “N-view computational methods”
Chapter 19 “Auto-calibration”

[FP] Chapter 13 “projective structure from motion”

[Szelisky] Chapter 7 “Structure from motion”
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Structure from motion problem

Courtesy of Oxford Visual Geometry Group



Projective camera




Weak perspective projection

When the relative scene depth is small compared to its distance from the camera

f’ Zo




Weak perspective projection
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Weak perspective projection
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Special Case: Weak Perspective (Affine Projection)
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Orthographic (atfine) projection

Distance from center of projection to image plane is infinite
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Pros and Cons of These Models

e Weak perspective results in much simpler math.

— Accurate when object is small and distant.
— Most useful for recognition.

e Pinhole perspective is much more accurate for
modeling the 3D-to-2D mapping.

— Used in structure from motion or SLAM.



Affine structure from motion

(simpler problem)

Image 1

From the mxn observations x

World point X

Image i

ljl

. estimate:

* m projection matrices M. (affine cameras)
*n 3D points X,



Affine structure from motion

(simpler problem)

World point X
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For the affine case (in Euclidean space)
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The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic CIppI'O(JCh (affine epipolar geometry; estimate F; cameras; points)

- Factorization method




A factorization method -
Tomasi & Kanade algorithm

C. Tomasi and T. KanadeShape and motion from image streams under orthography: A factorization

method. IJCV, 9(2):137-154, November 1992.

* Data centering
* Factorization



A factorization method - Centering the data

Centering: subtract the centroid of the image points




A factorization method - Centering the data

Centering: subtract the centroid of the image points

n

[Eq. 6] f(ij:xij—lixik =Ain+bi—lEAiXk—lEbi

n - n

x, =A X, +Db,
[Eq. 4]




A factorization method - Centering the data

Centering: subtract the centroid of the image points

[Eq. 6] f(ij:xij—lixik =Ain+bi—lEAiXk—lEbi

n - n

X. E X,
i ik é Centroid of 3D points




A factorization method - Centering the data

Thus, after centering, each normalized observed point is related to the 3D point

by
Xij — AZX] [Eq. 8]
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A factorization method - Centering the data

If the centroid of points in 3D = center of the world reference system

Xz’j - Ain = Ain [Eq. 9]

' n E ik é Centroid of 3D points




A factorization method - factorization

Let’s create a 2m x n data (measurement) matrix:

A
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Each ﬁij entry is a 2x1 vector!



A factorization method - factorization

Let’s create a 2m x n data (measurement) matrix:

(2m x n)

X
X,
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mn
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Al
= -2 I.Xl X, - Xn]
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cameras M

(2m 8 3) [Eq. 10]

Each ﬁij entry is a 2x1 vector!
A; is 2x3 and X is 3x]1

The measurement matrix D = M S has rank 3
(it's a product of a 2mx3 matrix and 3xn matrix)



Factorizing the Measurement Matrix

How to factorize D?

2m
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Measurements
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2m

Factorizing the Measurement Matrix

e By computing the Singular value decomposition of D!

VT




Factorizing the Measurement Matrix

Since rank (D)=3, there are only 3 non-zero singular values ¢, , 0, and o;
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2m

Factorizing the Measurement Matrix

3 n
<——>
D : U3 x 31 VV3 x V3T




2m

Factorizing the Measurement Matrix

S = structure

M = Motion (cameras)

D=U,W,V,"=U, (W, V,)=MS [Eq. 12]



Factorizing the Measurement Matrix
D=U,W,V,"=U; (W;V,)=MS [Eq. 12|

What is the issue here? D has rank>3 because of:

* measurement noise
» affine approximation

Theorem: When D has a rank greater than 3, U3W3V3T is the best
possible rank- 3 approximation of D in the sense of the Frobenius norm.

M=~ U,

. T m n min{m, n}
D=U,W,V; . . 1Al = ([ D) layl? = \J Y o
S = ‘NGVY3 i=1 j=1 i=1




Reconstruction results
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.




Results

LG

Figure 6.20: Four out of the 240 frames of the cup 1mage
slreatn.

CSE 576, Spring 2008

Figure G.23: A front view of the cup and fingers, with
the original image intensities mapped onto the resulting

surface.

Figure 6.24: A view from above of the cup and fingers

with 1mage mtensities mapped onto the surface.

Structure from Motion

53



Affine Ambiguity
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Affine Ambiguity

D — M H X H? S
N\ J J
Y Y
M* S*

e The decomposition is not unique. We get the same D by applying
the transformations:

M*=MH
S* =H1S
where H is an arbitrary 3x3 matrix describing an affine transformation

e Additional constraints must be enforced to resolve this ambiguity



Affine Ambiguity
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The Affine Structure-from-Motion Problem

Given m images of n fixed points X. we can write

X, =AX +Db,

fori=1,.[,m

N. of cameras

andj=1, ..

N.

9

of points

Problem: estimate m matrices A;, m matrices b.
and the n positions X. from the mxn observations x; .

How many equations and how many unknown?

2m « n equations in 8m + 3n - 8 unknowns



Similarity Ambiguity

* The scene is determined by the images only up a similarity
transformation (rotation, translation and scaling)

 This is called metric reconstruction

) Similarity

e The ambiguity exists even for (intrinsically) calibrated cameras

e For calibrated cameras, the similarity ambiguity is the only ambiguity
[Longuet-Higgins ‘81]



Similarity Ambiguity

e |tisimpossible, based on the images alone, to estimate the
absolute scale of the scene




Resolving the similarity ambiguity

(W) ‘ Calibration rig

image

A\ oy

LW

A\ N\

l W

While calibrating a camera, we make assumptions
about the geometry of the world
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e Perspective SFM

Silvio Savarese Lecture 7 -



Structure from motion problem

rom the mxn observations x;, estimate:

*m projection matrices M= motion
*n 3D points X;= structure



Structure from motion problem

m cameras M;... M,



Structure from Motion Ambiguities

In the general case (nothing is
known) the ambiguity is
expressed by an arbitrary 4X4
projective transformation




The Structure-from-Motion Problem

Given m images of n fixed points X; we can write

Xij p— Mi XJ fori=1,.[m|landj=1, ]

N. of cameras N. of points

Problem: estimate m 3x4 matrices M, and n positions
X: from mxn obvesrvations x; .

* If the cameras are not calibrated, cameras and points
can only be recovered up to a 4x4 projective (where the
4x4 projective is defined up to scale)

e Given two cameras, how many points are needed?
* How many equations and how many unknown?

2m x n equations in 11m+3n - 15 unknowns




Projective Ambiguity

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003



Metric reconstruction (upgrade)

 The problem of recovering the metric reconstruction from
the perspective one is called self-calibration




Structure-from-Motion methods

1. Recovering structure and motion up to
perspective ambiguity

° Algebraic approach (by fundamental matrix)

e Factorization method (by svD)

e Bundle adjustment

2. Resolving the perspective ambiguity



Algebraic approach (2-view case)

. Compute the fundamental matrix F from two

Views
. Use F to estimate projective cameras

. Use these cameras to triangulate and estimate
points in 3D



Algebraic approach (2-view case)

A s
-
X, =M, X
X, =M, X,
For =1, ..{,n
N. of points

From at least 8 point correspondences, compute F
associated to camera 1 and 2



Algebraic approach (2-view case)

. Compute the fundamental matrix F from two
views (eg. 8 point algorithm)

. Use F to estimate projective cameras

. Use these cameras to triangulate and estimate
points in 3D



Algebraic approach (2-view case)

-
X, =M, X,
M, X
; Xpj =My A
For =1, ..{,n
N. of points

Because of the projective ambiguity, we can always apply a projective
transformation H such that:

M,H'=[I 0] M,H'=[A b]
[Eq. 3] S:r:::;cal perspective [Eq. 4]



Algebraic approach (2-view case)

* Cadll X a generic 3D point X;

« Cadll x and x> the corresponding observations to camera 1 and respectively

(M, =M, H'=

[Egs. 5]
A

x' =[AIb]X =[AlDb]
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x=M, X=M H"'HX=[II0]X [Eq. ¢]

= A[Il0]

x xb =(Ax+b)xb =Axxb

X" (xX'xb)=x"-(Axxb)=0

X" (b xAx)=0

[Eq. 10]
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Eq. 8]

[Eq. 9]

X' =M,X=M,H"' HX=[ADb]X

[Eq. 7]



Cross product as matrix multiplication

axb=| a 0 —a_|b, |=]a,]b




[Egs. 5]

X

X"

Algebraic approach (2-view case)

(M =M HT=[ 10| x=M HH X =[1]0]X

<M, MZH‘1=[A b] X=M,H' HX=[A|b]X
X

A
an

.

[Eq. 6]

(b xAXx)=0 [Eq. 10]

JA xX'Fx=0

fundamental matrix!



Compute cameras

xX"Fx=0  F=[bJA=bxA [l

Compute b:

* Let’s consider the product F b

F-b=[b_JA-b=bxA-b=0 [t 12]

« Since F is singular, we can compute b as least sq. solution
of Fb = 0, with |b|=1 using SVD

« Using a similar derivation, we have that b F = Q[Eq. 12-bis]



Compute cameras

T —
xX ' Fx=0 F=[b A Fb=0 [Eq. 12]
bTF =0 [Eq. 12-bis]
[Eq. 11]

Compute A:
 Define:A’=—[b,] F
« Let's verify that[b_]A' is equal to F:
Indeed: [b,JA'=—[b,][b, ]F=-(bb" b HF =-bb"F+b F=0+1-F=F

[Eq. 13]
e Thus, A=A’=—[b,]F

[Eqs. 14] Ml =[ I O :| M2=[— [bx]F b ]




Interpretation of b

T —
xX ' Fx=0 F=[b A Fb=0 [Eq. 12]
bTF =0 [Eq. 12-bis]
[Eq. 11]

What's b??



Epipolar Constraint pecture s)
X

O] e V 02

F x, is the epipolar line associated with x, (I, = F x,)
FTx, is the epipolar line associated with x; (I, = F' x,)
F is singular (rank two)

|Fe,=0 and FTe, =0 |
F is 3x3 matrix; 7 DOF




Interpretation of b

x'Fx=0 F=[b ]A

[Eq. 11]

b is an epipole!

M= 10| M-
g

M= 10| i, -
[Eq. 15]

{Fb:O

bTF =0

- [b,JF b |
4

[— le [ e ]



Algebraic approach (2-view case)

. Compute the fundamental matrix F from two
views (eg. 8 point algorithm)

. Use F to estimate projective cameras

. Use these cameras to triangulate and estimate
points in 3D




Triangulation

M, =[ I 0 ] )
- X, Forj=1,..n

[_ [ex ]F ¢ :| 3D points can be computed from camera matrices via
SVD (see page 312 of HZ for details)

~

M, =



Algebraic approach: the N-views case

~ ~ < 7 3D point iated t int
- From Ik CInCI Ih eMk 0 Mh ° X[k,h] corri:pno;j:::::aevailzl:F:lZn

between I, and I},

- Pairwise solutions may be combined together using bundle
adjustment



Structure-from-Motion Algorithms

o Algebraic CIppI'OGCh (by fundamental matrix)
e Factorization method (by SvD)

* Bundle adjustment




Limitations of the approaches so far

e Factorization methods assume all points are visible.
This not true if:

e occlusions occur

e failure in establishing correspondences

e Algebraic methods work with 2 views



Bundle adjustment

« Non-linear method for refining structure and motion

 Minimizes re-projection error
2

E(M, X) = iZH:D(xij, M,X)

i=1 j=I

Reconstructed Xj

Q. ground truth X;




General Calibration Problem

m n 2
E(M,X) =) Dlx;,MX))
o \ \ parameters

measurements

D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm

* |terative, starts from initial solution

May be slow if initial solution far from real solution
Estimated solution may be function of the initial solution
Newton requires the computation of J, H

* Levenberg-Marquardt doesn’t require the computation of H



Bundle adjustment

* Advantages
e Handle large number of views
* Handle missing data

* Limitations
¢ Large minimization problem (parameters grow with number of views)
e Requires good initial condition

» Used as the final step of SFM (i.e., after the
factorization or algebraic approach)

* Factorization or algebraic approaches provide a
initial solution for optimization problem
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e The SFM problem
e Affine SFM

e Perspective SFM
e Self-calibration

e Applications
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Self-calibration

» Self-calibration is the problem of recovering the
metric reconstruction from the perspective (or
affine) reconstruction

*  We can self-calibrate the camera by making some
assumptions about the cameras




Self-calibration

[HZ] Chapters 19 “Auto-calibration”

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views

- Algebraic approach

- Stratified approach



Inject information about the camera
during the bundle adjustment optimization

/
/
/‘
/
-,
4 P
e
e _/ ”
i .“' u ,(/’
) .“‘"' ) / /
i Y
i
L

—

For calibrated cameras, the similarity ambiguity is the
only ambiguity ionguettiggins 811
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Structure frrom motion
problem

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman,
98

Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99

Levoy et al., 00

Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04

Brown & Lowe, 04
Schindler et al, 04
Lourakis & Argyros, 04
Colombo et al. 05

Courtesy of Oxford Visual Geometry Group

Golparvar-Fard, et al. JAEI
10

Pandey et al. IFAC, 2010
Pandey et al. ICRA 2011
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09

Frahm et al., 10



Reconstruction and texture mapping

M. Pollefeys et al 98—




Incremental reconstruction of construction sites

Initial pair — 2168 & Complete Set 62,323 points, 160 images  Golparvar-Fard. Pena-Mora, Savarese 2008
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Reconstructed scene + Site photos

# ' D4AR System | Visualization of Construction Progress | University of Illinois, Urbana-Champai
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QE: Ebb and Flow

Click and drag the mouse to look around
L: Onset Position
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© Apr 2009, D4AR ¢




Reconstructed scene + Site photos

of Construction Progress | University of lllinois, Urbana-Ck
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Results and applications

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," AC
Transactions on Graphics (SIGGRAPH Proceedings),2006,

A ” ﬁﬁétosynth‘




Next lecture

* Fitting and Matching



Appendix




Direct approach

We use the following results:

1. A relationship that maps conics across views
2. Concept of absolute conic and its relationship to K
3. The Kruppa equations



Projections of conics across views
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Projection of absolute conics across views

From lecture 4, [HZ] page 210, sec. 8.5.1

—
—~_
—
—
—

le].o™ [e].=F o' F"
[Eq. 3]

o=(KK")™" |[Eq. 4]
a)':(K' K' T)_l [Eq 5]




Kruppa equations

[Faugeras et al. 92] From [HZ] page 471

( u, K'K''u, Y ( o’ v K K'v, )
~u K'K'""'u, |x| 06,0,v/ K K'v, |=0  [Eq. 6]
\ulTK'K'Tul ) oiviK K'v, )

\

where u;, v; and c;are the columns and singular values of SVD of F

These give us two independent constraints in the elements of K and K’



Kruppa equations

[Faugeras et al. 92]

TK'K'Tu2 Y[ o, leKTv1 )

T T
—u K'K'""u, |x| o,0,v K K'v, |=0

\ulTKK'Tul ) \szzTKKTvz )
w, KK 'u,  —-u/KK'u, uKK'y Eq. 7]
GIVIKKTVI 0'10'2\/11(1(Tv2 02V2KKTV2 a
f 0 0
* Let’s make the following assumption: K'=K={0 f 0 [Eq. 8]
0 0 1

[Eq. 91 af*+Bf+y=0 — f



Kruppa equations

[Faugeras et al. 92]

Powerful if we want to self-calibrate 2 cameras with
unknown focal length

Limitations:
* Work on a camera pair
e Don’twork if R=0

[Eq. 10] [e']xa)_l [e'] = F o 'FT becomes trivial
Since: [ = [e']x



Self-calibration

[HZ] Chapters 19 “Auto-calibration”

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views

‘- Algebraic approach

- Stratified approach



Auto Calibration

* Auto-calibration 1s the process of determining internal camera
parameters directly from multiple uncalibrated images.

* Once this 1s done, 1t 1s possible to compute a metric
reconstruction from the images.

* Auto-calibration avoids the onerous task of calibrating cameras
using special calibration objects.

* This gives great flexibility since, for example, a camera can be
calibrated directly from an 1mage sequence despite unknown
motion and changes in some of the internal parameters.



Algebraic Frame work for Auto-calibration

* Suppose we have a set of images acquired by a camera with fixed
internal parameters, and that a projective reconstruction 1s
computed from point correspondences across the image set.

* The reconstruction computes a projective camera matrix Pj for
each view. Our constraint is that for the actual cameras the internal
parameter matrix K is the same (but unknown) for each view.

 Now, each camera Pi of the projective reconstruction may be
decomposed as Pi = Ki[Ri | ti] but in general the calibration matrix
Ki will differ for each view.

* Thus the constraint will not be satisfied by the projective
reconstruction.



Algebraic Framework

* However, we have the freedom to vary our projective reconstruction
by transforming the camera matrices by a homography H.

* Since the actual cameras have fixed internal parameters, there will
exist a homography (or a family of homographies) such that the
transformed cameras PiH do decompose as PiH = KRi[l | ti], with the
same calibration matrix for each camera, so the reconstruction is
consistent with the constraint.

* Provided there are sufficiently many views and the motion between
the views is general, then this consistency constrains H to the extent
that the reconstruction transformed by H is within a similarity
transformation of the actual cameras and scene, i.e. we achieve a

metric reconstruction.



General approach

(1) Obtain a projective reconstruction {P’, X }.
(11) Determine a rectifying homography H from auto-calibration constraints, and
transform to a metric reconstruction {P'H, H'X }.

- - . —~ - e - . u - - - - —~ - - - —

Suppose we have a projective reconstruction {P*, X; }; then based on constraints on the
cameras’ internal parameters or motion we wish to determine a rectifying homography
H such that {P'H,H "X} is a metric reconstruction.

Our goal is to find H



Result

Result 19.1. A4 projective reconstruction {P', X;} in which P* = [I | 0] can be trans-
formed to a metric reconstruction {P'H, H~'X} by a matrix H of the form

K 0 |
H = 19.2
where K is an upper triangular matrix. Furthermore,

(1) K = K' is the calibration matrix of the first camera.
(11) The coordinates of the plane at infinity in the projective reconstruction are given
by, = (p". 1)

Conversely, if the plane at infinity in the projective frame and the calibration matrix of
the first camera are known, then the transformation H that converts the projective to a
metric reconstruction is given by (19.2).



Supp(;se that all the cameras have the same internal parameters, so K’ = K, then (19.4)

becomes
KK' = (Af _ a?‘pT) KK' (A?‘ - aﬁpT)T i=2.....m. (19.5)

for the number of views required (in principle) in order to be able to determine the 8
unknowns. Each view other than the first imposes 5 constraints since each side i1s a
3 x 3 symmetric matrix (1.e. 6 independent elements) and the equation is homogeneous.
Assuming these constraints are independent for each view, a solution 1s determined
provided 5(m — 1) > 8. Consequently, provided m > 3 a solution is obtained, at
least in principle. Clearly, 1f m 1s much larger than 3 the unknowns K and p are very
over-determined. AN

Eachview: =2, ..., m provides an equation, and we can develop a counting argument



Algebraic approach wmuitiview approach

Suppose we have a projective reconstruction {Mi,)zj}

Let H be a homography such that:

First perspective camera is canonical: Ml =] I O ]I[Eq. 11]
ith perspective reconstruction of the camera (known): Mi — [ Ai bi ]

[Eq. 12]

Ea.13) (A ~bp VK K! (A -bp") =K, K 2o

K, 0
[Eq. 14] H = P is an unknown 3x1 vector
T
-p K, 1

K,...K, are unknown



Algebraic approach wmuitiview approach

Suppose we have a projective reconstruction

Let H be a homography such that:

{ First perspective camera is canonical: Ml =] I O ]I[Eq. 11]

ith perspective reconstruction of the camera (known): Mi — [ Ai bi ]

[Eq. 12]

Ea.13) (A ~bp VK K! (A -bp") =K, K 2o

How many unknowns? e 3from p
 5m from K,...K |

How many equations? 5 independent equations [per view]



Algebraic approach wmuitiview approach

Suppose we have a projective reconstruction

Let H be a homography such that:

{ First perspective camera is canonical: Ml =] I O ]I[Eq. 11]

ith perspective reconstruction of the camera (known): Mi — [ Ai bi ]

[Eq. 12]
Assume all camera matrices are identical: K, =K, ... =K,

0151 (A, ~bp")K K" (A =bp") =K K™ i2um

How many unknowns? e 3from p
e 5fromK

How many equations? 5 independent equations [per view]

We need at least 3 views to solve the self-calibration problem



Algebraic approach

Art of self-calibration:
Use assumptions on Ks to generate enough equations on the unknowns

Condition N. Views
e Constant internal parameters 3
e Aspect ratio and skew known 4

e Focal length and offset vary

e Skew =0, all other parameters vary 8

Issue: the larger is the number of view,

i I
the harder is the correspondence problem Bundle adjustment helps!



SFM problem - summary

1. Estimate structure and motion up perspective

transformation

1. Algebraic
2. factorization method
3. bundle adjustment

2. Convert from perspective to metric (self-calibration)
3. Bundle adjustment
* % * %

or

1. Bundle adjustment with self-calibration constraints





