
Lecture 7 -Silvio Savarese 31-Jan-18

• The	SFM	problem
• Affine	SFM
• Perspective	SFM
• Self-calibration
• Applications

Lecture	7
Multi-view	geometry

Reading:		
[HZ]	 Chapter	10	“3D	reconstruction	of	cameras	and	structure”

Chapter	18	“N-view	computational	methods”
Chapter	19	“Auto-calibration”

[FP] Chapter		13	“projective	structure	from	motion”
[Szelisky]	Chapter		7	“Structure	from	motion”



Courtesy of Oxford Visual Geometry Group

Structure from motion problem
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Special Case: Weak Perspective (Affine Projection) 
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Orthographic (affine) projection
Distance from center of projection  to image plane is infinite
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Pros	and	Cons	of	These	Models

• Weak	perspective	results	in	much	simpler	math.
– Accurate	when	object	is	small	and	distant.
– Most	useful	for	recognition.

• Pinhole	perspective	is	much	more	accurate	for	
modeling	the	3D-to-2D	mapping.
– Used	in	structure	from	motion	or	SLAM.



Affine structure from motion
(simpler problem)

Image 1

World point Xj

Image i

From the mxn observations xij, estimate: 
•m projection matrices Mi (affine cameras)
•n 3D points Xj

xij



Affine structure from motion
(simpler problem)

Image 1

World point Xj

Image i

xij

xij =AiX j +bi [Eq. 4]

2x1 2x3 2x13x1

For the affine case (in Euclidean space)



The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method



A factorization method –
Tomasi & Kanade algorithm

C. Tomasi and T. KanadeShape and motion from image streams under orthography:  A factorization 
method. IJCV, 9(2):137-154, November 1992. 

• Data centering
• Factorization 



Centering: subtract the centroid of the image points

A factorization method  - Centering the data
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Centering: subtract the centroid of the image points

A factorization method  - Centering the data
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Centering: subtract the centroid of the image points

A factorization method  - Centering the data
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A factorization method  - Centering the data
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Thus, after centering, each normalized observed point is related to the 3D point 
by

[Eq. 8]

[Eq. 7]



A factorization method  - Centering the data
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[Eq. 9]jiij XAx ˆˆ =

[Eq. 7]
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A factorization method  - factorization
Let’s create a 2m ´ n data (measurement) matrix:

Each        entry is a 2x1 vector!x̂ij



Let’s create a 2m ´ n data (measurement) matrix:
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The measurement matrix D = M S has rank 3
(it’s a product of  a 2mx3 matrix and 3xn matrix)

A factorization method  - factorization

(2m × n) M
S

Each        entry is a 2x1 vector!
Ai is 2x3 and Xj is 3x1

x̂ij

[Eq. 10]



Factorizing	the	Measurement	Matrix

= ×

2m

n 3
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3Measurements 
D

Motion
M

Structure
S

D =MS

How	to	factorize	D?	



• By	computing	the	Singular	value	decomposition	of	D!

=2m

n n

n n

× × n

D U W VT

Factorizing	the	Measurement	Matrix



Since rank (D)=3, there are only 3 non-zero singular values σ1 , σ2 and σ3

Factorizing	the	Measurement	Matrix

Where W3 =

σ1 0 0
0 σ 2 0
0 0 σ 3
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[Eq. 11]



Factorizing	the	Measurement	Matrix



M = Motion (cameras) 

S = structure

Factorizing	the	Measurement	Matrix

D = U3 W3 V3
T = U3 (W3 V3

T) = M S [Eq. 12]



Theorem:When							has	a	rank	greater	than																										is	the	best	
possible	rank- approximation	of	D in	the	sense	of	the	Frobenius norm.

D 3,  U3W3V3
T

3

3 3 3
T=D U W V

M ≈ U3      

S ≈W3V3
T

"
#
$

%$

What	is	the	issue	here?	

Factorizing	the	Measurement	Matrix

• measurement	noise	
• affine	approximation

D has	rank>3	because	of:	

D = U3 W3 V3
T = U3 (W3 V3

T) = M S [Eq. 12]



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 
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Results



Affine	Ambiguity

=D M S



Affine	Ambiguity

• The	decomposition	is	not	unique.	We	get	the	same	D	by	applying	
the	transformations:

M*	= M	H
S*	=	H-1S

where	H	is	an	arbitrary	3x3	matrix	describing	an	affine	transformation

• Additional	constraints	must	be	enforced	to	resolve	this	ambiguity

= ×D M SH H-1

M* S*



Affine	Ambiguity

S*	=	H-1S
A*	=	A	H

A’*	=	A’	H

A
A’

S



The Affine Structure-from-Motion Problem

Given m images of n fixed points Xj we can write

Problem: estimate m matrices Ai, m matrices bi
and the n positions Xj from the m´n observations xij .

2m ´ n equations in 8m + 3n - 8 unknowns

How many equations and how many unknown?

N. of cameras N. of points
xij =AiX j +bi for i = 1, …,m   and j = 1, … ,n



Similarity	Ambiguity

• The	ambiguity	exists	even	for	(intrinsically)	calibrated	cameras
• For	calibrated	cameras,	the	similarity	ambiguity	is	the only	ambiguity

[Longuet-Higgins ’81]

• The scene is determined by the images only up a similarity
transformation (rotation, translation and scaling)

• This is calledmetric reconstruction

Similarity



• It	is	impossible,	based	on	the	images	alone,	to	estimate	the	
absolute	scale	of	the	scene

Similarity	Ambiguity



Resolving	the	similarity	ambiguity

jC

Calibration rig

While	calibrating	a	camera,	we	make	assumptions	
about	the	geometry	of	the	world

pi

jC
pi

pi

image
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Structure from motion problem

x1j

x2j

xmj

Xj

M1

M2

Mm

From the mxn observations xij, estimate: 
•m projection matrices Mi

•n 3D points Xj

= motion
= structure



Structure from motion problem
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Structure	from	Motion	Ambiguities

• In	the	general	case	(nothing	is	
known)	the	ambiguity	is	
expressed	by	an	arbitrary	4X4	
projective	transformation

[ ]iiii TRKM =jij XMx =

jXH
1

j HM -

( )( )jijij XHHMXMx  
-1
 ==

Projective

x j

x j



The Structure-from-Motion Problem

Given m images of n fixed points Xj we can write

Problem: estimate m 3´4 matrices Mi and n positions 
Xj from m´n obvesrvations xij .

• If the cameras are not calibrated, cameras and points 
can only be recovered up to a 4x4 projective (where the 
4x4 projective  is defined up to scale)

jiij XMx =

• Given two cameras, how many points are needed?

2m ´ n equations in 11m+3n – 15 unknowns

• How many equations and how many unknown?

N. of cameras N. of points

for i = 1, …,m   and j = 1, … ,n



Projective	Ambiguity

R.	Hartley	and	A.	Zisserman,	Multiple	View	Geometry	in	Computer	Vision,	2nd	edition,	2003

S =



Metric	reconstruction	(upgrade)

• The	problem	of	recovering	the	metric	reconstruction	from	
the	perspective	one	is	called	self-calibration



• Algebraic	approach	(by	fundamental	matrix)

• Factorization	method	(by	SVD)
• Bundle	adjustment

Structure-from-Motion	methods

1.	Recovering	structure	and	motion	up	to	
perspective	ambiguity

2.	Resolving	the	perspective	ambiguity



Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two 
views

2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate 

points in 3D



x1 j

x2 j

M1

M2

Algebraic approach (2-view case)

x1 j =M1 Xj

From at least 8 point correspondences, compute F 
associated to camera 1 and 2

Xj

x2 j =M2 Xj

N. of points

For  j = 1, … ,n



Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two 
views (eg. 8 point algorithm)

2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate 

points in 3D



x1j

x2j

M1

M2

Algebraic approach (2-view case)

Because of the projective ambiguity, we can always apply a projective 
transformation H such that:

[ ]0IHM 1
1 =- [ ]bAHM 1

2 =-

Canonical perspective 
camera[Eq. 3] [Eq. 4]

x1 j =M1 Xj

x2 j =M2 Xj

N. of points

For  j = 1, … ,n

Xj



x =M1 X =M1 H
−1 H X = [I | 0] !X

Algebraic approach (2-view case)
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[Eq. 8]

[Eq. 9]

[Eq. 10]

• Call X a generic 3D point Xij
• Call x and x’ the corresponding observations to camera 1 and respectively
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0][ =¢ ´ xAbx T AbF ][ ´= 0FT =¢ xx

Algebraic approach (2-view case)
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fundamental matrix! 



F = [b× ]A = b×A

Compute cameras

• Since F is singular, we can compute b as least sq. solution 
of F b = 0, with |b|=1 using SVD

0FT =¢ xx

0][ =×´=×=× ´ bAbbAbbF

Compute b:

[Eq. 11]

• Let’s consider the product F b

• Using a similar derivation, we have that bT F = 0

[Eq. 12]

[Eq. 12-bis]



Compute cameras

A’ = –[b×] F 
Compute A:

!M1 = I 0!
"

#
$

!M2 = − [bx ]F b"
#

$
%

• Let’s verify that '][ Ab´ is equal to F :

Indeed: [b× ]A ' = −[b× ][b× ]F = −(b b
T − b 2 I) F = −b bTF+ b 2 F = 0+1⋅F = F

• Define:

AbF ][ ´=0FT =¢ xx
[Eq. 11]

• Thus, A = A’ = –[b×] F 
[Eq. 13]

[Eqs. 14]

F b = 0 
bT F = 0

[Eq. 12]

[Eq. 12-bis]



Interpretation	of	b

AbF ][ ´=0FT =¢ xx
[Eq. 11]

F b = 0 
bT F = 0

What’s	b??

[Eq. 12]

[Eq. 12-bis]



Epipolar Constraint	[lecture	5]

O1 O2

x2

X

x1

e1
e2

F	x2 is	the	epipolar line	associated	with	x2 (l1 =	F	x2)
FT	x1 is	the	epipolar line	associated	with	x1 (l2 =	FT	x1)
F	is	singular	(rank	two)
F	e2 =	0			and			FT	e1 =	0
F	is	3x3	matrix;	7	DOF	



b is	an	epipole!

HZ, page 254
PF, page 288

Interpretation	of	b

[Eq. 15] [Eq. 16]

AbF ][ ´=0FT =¢ xx
[Eq. 11]

F b = 0 
bT F = 0

!M1 = I 0!
"

#
$

!M2 = − [bx ]F b"
#

$
%

!M1 = I 0!
"

#
$

!M2 = − [ex ]F e"
#

$
%



Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two 
views (eg. 8 point algorithm)

2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate 

points in 3D



x1j

x2j

Triangulation

x1 j =

x2 j =

!M1 = I 0!
"

#
$

!M2 = − [ex ]F e"
#

$
%

à For  j = 1, … ,n!X j

!M1
!X j

!M2
!X j

!M1

!M2

!X j

3D points can be computed from camera matrices via 
SVD (see page 312 of HZ for details)



Algebraic approach: the N-views case

x1j

xkj

xhj

- From Ik and Ih à !Mk , !Mh, !X[k,h]
3D points associated to point 
correspondences available 
between Ik and Ih

!M1

!Mk

!Mh

!X j

- Pairwise solutions may be combined together using bundle 
adjustment



• Algebraic approach (by fundamental matrix)

• Factorization method (by SVD)

• Bundle adjustment

Structure-from-Motion Algorithms



• Factorization	methods	assume	all	points	are	visible.	
This	not	true	if:

• occlusions	occur
• failure	in	establishing	correspondences

• Algebraic	methods	work	with	2	views	

Limitations	of	the	approaches	so	far



Bundle adjustment
• Non-linear method for refining structure and motion
• Minimizes re-projection error

( )
2m

1i

n

1j
jiij M,D),M(E åå

= =

= XxX

x1j

x2j

xmj

Reconstructed Xj

O1

O2

Om

M1Xj

M2Xj
MmXj

ground truth Xj



measurements
parameters

D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm

• Iterative, starts from initial solution 
• May be slow if initial solution far from real solution 
• Estimated solution may be function of the initial solution
• Newton requires the computation of J, H
• Levenberg-Marquardt doesn’t require the computation of H

General Calibration Problem

( )
2m

1i

n

1j
jiij M,D),M(E åå

= =

= XxX



• Advantages
• Handle large number of views
• Handle missing data

• Limitations
• Large minimization problem (parameters grow with number of views)

• Requires good initial condition

• Used as the final step of SFM (i.e., after the 
factorization or algebraic approach) 

• Factorization or algebraic approaches provide a 
initial solution for optimization problem

Bundle adjustment
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• Self-calibration is the problem of recovering the 
metric reconstruction from the perspective (or 
affine) reconstruction

• We can self-calibrate the camera by making some 
assumptions about the cameras

Self-calibration



Self-calibration

Several	approaches:
- Use	single-view	metrology	constraints	(lecture	4)
- Direct	approach	(Kruppa Eqs)	for	2	views
- Algebraic	approach
- Stratified	approach

[HZ]		Chapters	19		“Auto-calibration”



Inject	information	about	the	camera	
during	the	bundle	adjustment	optimization

For	calibrated	cameras,	the	similarity	ambiguity	is	the
only	ambiguity [Longuet-Higgins ’81]
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Courtesy of Oxford Visual Geometry Group

Structure from motion 
problem

Levoy et al., 00
Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér,  04
Brown & Lowe, 04
Schindler et al, 04
Lourakis & Argyros, 04
Colombo et al. 05

Golparvar-Fard, et al.  JAEI 
10
Pandey et al. IFAC , 2010
Pandey et al.  ICRA 2011
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman, 
98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99



M. Pollefeys et al 98---

Reconstruction	and	texture	mapping



Incremental	reconstruction	of	construction	sites
Initial	pair	– 2168		&	Complete	Set	62,323	points,	160	images

62

Golparvar-Fard. Pena-Mora, Savarese 2008



Reconstructed	scene	+	Site	photos

63 The registration of images (08.27.08) within the reconstructed scene 
Student Dining and Residence Hall project in Champaign, IL. Images courtesy of Turner Construction.



64

Reconstructed	scene	+	Site	photos



Results	and	applications
Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," ACM 
Transactions on Graphics (SIGGRAPH Proceedings),2006,



Next lecture

• Fitting and Matching



Appendix



Direct	approach

We	use	the	following	results:

1. A	relationship	that	maps	conics	across	views
2. Concept	of	absolute	conic	and	its	relationship	to	K
3. The	Kruppa equations



Projections	of	conics	across	views

XTCw X = 0
X =
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[Eq. 1]

[Eq. 2]
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Projection	of	absolute	conics	across	views

O’O

[ ] [ ] TFFee 11' '' -
´

-
´ = ww

¥C

w 'w

¥P

1)( -= TKKw
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Ow

From lecture 4, [HZ] page 210, sec. 8.5.1

[Eq. 3]

[Eq. 4]

[Eq. 5]



Kruppa equations
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[Faugeras et	al.	92]

where	ui ,	vi and	si	are	the	columns	and	singular	values	of	SVD	of	F

These	give	us	two	independent	constraints	in	the	elements	of	K	and	K’

[Eq. 6]

From [HZ] page 471 



Kruppa equations
[Faugeras et	al.	92]

• Let’s	make	the	following	assumption:
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[Eq. 7]

[Eq. 8]

[Eq. 9]



Kruppa equations
[Faugeras et	al.	92]

• Powerful	if	we	want	to	self-calibrate	2	cameras	with	
unknown	focal	length

• Limitations:
• Work	on	a	camera	pair
• Don’t	work	if	R=0		
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becomes trivial

Since:

[Eq. 10]



Self-calibration

Several	approaches:
- Use	single-view	metrology	constraints	(lecture	4)
- Direct	approach	(Kruppa Eqs)	for	2	views
- Algebraic	approach
- Stratified	approach

[HZ]		Chapters	19		“Auto-calibration”



Auto Calibration

• Auto-calibration is the process of determining internal camera 

parameters directly from multiple uncalibrated images. 

• Once this is done, it is possible to compute a metric 

reconstruction from the images. 

• Auto-calibration avoids the onerous task of calibrating cameras 

using special calibration objects. 

• This gives great flexibility since, for example, a camera can be 

calibrated directly from an image sequence despite unknown 

motion and changes in some of the internal parameters.



Algebraic Frame work for Auto-calibration

• Suppose we have a set of images acquired by a camera with fixed 

internal parameters, and that a projective reconstruction is 

computed from point correspondences across the image set. 
• The reconstruction computes a projective camera matrix Pi for 

each view. Our constraint is that for the actual cameras the internal 
parameter matrix K is the same (but unknown) for each view. 

• Now, each camera Pi of the projective reconstruction may be 
decomposed as Pi = Ki[Ri | ti] but in general the calibration matrix 
Ki will differ for each view. 

• Thus the constraint will not be satisfied by the projective 
reconstruction.



Algebraic Framework

• However, we have the freedom to vary our projective reconstruction 
by transforming the camera matrices by a homography H. 

• Since the actual cameras have fixed internal parameters, there will 
exist a homography (or a family of homographies) such that the 
transformed cameras PiH do decompose as PiH = KRi[I | ti], with the 
same calibration matrix for each camera, so the reconstruction is 
consistent with the constraint. 

• Provided there are sufficiently many views and the motion between 
the views is general, then this consistency constrains H to the extent 
that the reconstruction transformed by H is within a similarity 
transformation of the actual cameras and scene, i.e. we achieve a 
metric reconstruction.



General approach

Our goal is to find H 



Result





Algebraic	approach Multi-view	approach

Suppose	we	have	a	projective	reconstruction { !Mi, !Xj}
Let	H	be	a	homography such	that:

First	perspective	camera	is	canonical: !M1 = [ I 0 ]
!Mi = [ Ai bi ]ith perspective	reconstruction	of	the	camera	(known):

K1
T Ai − bi p

T( )
T
= Ki Ki

TAi − bi p
T( ) K1 i=2…m

[Eq. 11]

[Eq. 12]

[Eq. 13]

H =
K1 0

−pT K1 1
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p is an unknown 3x1 vector[Eq. 14]
K1…Km	are	unknown		



K1
T Ai − bi p

T( )
T
= Ki Ki

TAi − bi p
T( ) K1

How	many	unknowns?	 • 3	from
• 5	m	from	K1…Km

How	many	equations?	 5	independent	equations	[per	view]

p

i=2…m
[Eq. 13]

Algebraic	approach Multi-view	approach

Suppose	we	have	a	projective	reconstruction

Let	H	be	a	homography such	that:

First	perspective	camera	is	canonical: !M1 = [ I 0 ]
!Mi = [ Ai bi ]ith perspective	reconstruction	of	the	camera	(known):

[Eq. 11]

[Eq. 12]



KT Ai − bi p
T( )

T
= K KTAi − bi p

T( ) K
How	many	unknowns?	 • 3	from

• 5	from	K
How	many	equations?	 5	independent	equations	[per	view]

p

i=2…m[Eq. 15]

Algebraic	approach Multi-view	approach

Assume	all	camera	matrices	are	identical:		K1 = K2 … = Km

We	need	at	least	3	views	to	solve	the	self-calibration	problem

Suppose	we	have	a	projective	reconstruction

Let	H	be	a	homography such	that:

First	perspective	camera	is	canonical: !M1 = [ I 0 ]
!Mi = [ Ai bi ]ith perspective	reconstruction	of	the	camera	(known):

[Eq. 11]

[Eq. 12]



Algebraic	approach
Art	of	self-calibration:	
Use	assumptions	on	Ks	to	generate	enough	equations	on	the	unknowns

Condition N.	Views

• Constant	internal	parameters 3

• Aspect	ratio	and	skew	known
• Focal	length	and	offset	vary

4

• Skew	=0,	all	other	parameters	vary 8

Issue:	the	larger	is	the	number	of	view,	
the	harder	is	the	correspondence	problem Bundle	adjustment	helps!



SFM problem - summary

1. Estimate structure and motion up perspective 
transformation 

1. Algebraic
2. factorization method
3. bundle adjustment

2. Convert from perspective to metric (self-calibration)

3. Bundle adjustment

** or **

1. Bundle adjustment with self-calibration constraints




