Lecture 7

Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

Reading:

[HZ] Chapter 10 " 3 D reconstruction of cameras and structure"
Chapter 18 "N-view computational methods"
Chapter 19 "Auto-calibration"
[FP] Chapter 13 "projective structure from motion"
[Szelisky] Chapter 7 "Structure from motion"

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Projective camera

Weak perspective projection

When the relative scene depth is small compared to its distance from the camera

Weak perspective projection

Weak perspective projection

Projective (perspective)

$$
M=K\left[\begin{array}{ll}
R & T
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{v} & \mathbf{1}
\end{array}\right] \rightarrow \quad M=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & \mathbf{1}
\end{array}\right]
$$

Special Case: Weak Perspective (Affine Projection)

If $\Delta z \ll-\bar{z}: \begin{aligned} & x^{\prime} \approx-m x \\ & y^{\prime} \approx-m y\end{aligned} \quad m=-\frac{f^{\prime}}{\bar{z}}$
Justified if scene depth is small relative to average distance from camera

$$
\mathrm{P}^{\prime}=\mathrm{M}_{\mathrm{w}}=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right] \mathrm{P}_{\mathrm{w}}=\left[\begin{array}{l}
\mathbf{m}_{1} \mathrm{P}_{\mathrm{w}} \\
\mathbf{m}_{2} \mathrm{P}_{\mathrm{w}} \\
\mathbf{m}_{3} \mathrm{P}_{\mathrm{w}}
\end{array}\right] \quad M=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{v} & \mathbf{1}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]
$$

$$
\rightarrow\left(\frac{\mathbf{m}_{1} \mathrm{P}_{w}}{\mathbf{m}_{3} \mathrm{P}_{w}}, \frac{\mathbf{m}_{2} \mathrm{P}_{w}}{\mathbf{m}_{3} \mathrm{P}_{w}}\right)
$$

Perspective: projective

 transformation> Weak Prospective: Affine Transformatoin

Orthographic (affine) projection

Distance from center of projection to image plane is infinite

Pros and Cons of These Models

- Weak perspective results in much simpler math.
- Accurate when object is small and distant.
- Most useful for recognition.
- Pinhole perspective is much more accurate for modeling the 3D-to-2D mapping.
- Used in structure from motion or SLAM.

Affine structure from motion

 (simpler problem)

From the $m \times n$ observations $\mathbf{x}_{i j}$ estimate:

- m projection matrices \mathbf{M}_{i} (affine cameras)
- n 3D points X_{j}

Affine structure from motion

 (simpler problem)

For the affine case (in Euclidean space)

The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method

A factorization method Tomasi \& Kanade algorithm

C. Tomasi and T. KanadeShape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

- Data centering
- Factorization

A factorization method - Centering the data

Centering: subtract the centroid of the image points
[Eq. 6] $\quad \hat{\mathbf{x}}_{i j}=\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k} \quad \overline{\mathbf{x}}_{i}$

A factorization method - Centering the data

Centering: subtract the centroid of the image points
[Eq. 6] $\quad \hat{\mathbf{x}}_{i j}=\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{A}_{i} \mathbf{X}_{k}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{b}_{i}$
$\mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{k}+\mathbf{b}_{i}$
[Eq. 4]

A factorization method - Centering the data

Centering: subtract the centroid of the image points
[Eq. 6] $\quad \hat{\mathbf{x}}_{i j}=\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{A}_{i} \mathbf{X}_{k}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{b}_{i}$
$\mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{k}+\mathbf{b}_{i}$
[Eq. 4]

$$
\begin{aligned}
=\mathbf{A}_{i}\left(\mathbf{X}_{j}-\frac{1}{n} \sum_{k=1}^{n=1} \mathbf{X}_{k}\right) & =\mathbf{A}_{i}\left(\mathbf{X}_{j}-\overline{\mathbf{X}}\right) \\
& =\mathbf{A}_{i} \hat{\mathbf{X}}_{j}
\end{aligned}
$$

$$
\begin{equation*}
\overline{\mathbf{X}}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \tag{Eq.7}
\end{equation*}
$$

Centroid of 3D points

A factorization method - Centering the data

Thus, after centering, each normalized observed point is related to the 3D point by

$$
\begin{equation*}
\hat{\mathbf{x}}_{i j}=\mathbf{A}_{i} \hat{\mathbf{X}}_{j} \tag{Eq.8}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\mathbf{X}}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \tag{Eq.7}
\end{equation*}
$$

Centroid of 3D points

A factorization method - Centering the data

If the centroid of points in 3D = center of the world reference system

$$
\begin{equation*}
\hat{\mathbf{x}}_{i j}=\mathbf{A}_{i} \hat{\mathbf{X}}_{j}=\mathbf{A}_{i} \mathbf{X}_{j} \tag{Eq.9}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\mathbf{X}}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \tag{Eq.7}
\end{equation*}
$$

Centroid of 3D points

A factorization method - factorization

Let's create a $2 \mathrm{~m} \times \mathrm{n}$ data (measurement) matrix:

$$
\left.\mathbf{D}=\left[\begin{array}{cccc}
\hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1 n} \\
\hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2 n} \\
& & \ddots & \\
\hat{\mathbf{x}}_{m 1} & \hat{\mathbf{x}}_{m 2} & \cdots & \hat{\mathbf{x}}_{m n}
\end{array}\right] \right\rvert\, \begin{gathered}
\text { cameras } \\
(2 \mathrm{~m})
\end{gathered}
$$

points (n)

Each $\hat{\mathbf{x}}_{i j}$ entry is a 2×1 vector!

A factorization method - factorization

Let's create a $2 \mathrm{~m} \times \mathrm{n}$ data (measurement) matrix:

Each $\hat{\mathbf{x}}_{i j}$ entry is a 2×1 vector!
\mathbf{A}_{i} is 2×3 and \mathbf{X}_{i} is 3×1
The measurement matrix $\mathbf{D}=\mathbf{M} \mathbf{S}$ has rank 3
(it's a product of a 2 mx 3 matrix and $3 \times n$ matrix)

Factorizing the Measurement Matrix

How to factorize D?

Factorizing the Measurement Matrix

- By computing the Singular value decomposition of D !

Factorizing the Measurement Matrix

Since rank (D)=3, there are only 3 non-zero singular values σ_{1}, σ_{2} and σ_{3}

Factorizing the Measurement Matrix

Factorizing the Measurement Matrix

$\mathbf{D}=\mathbf{U}_{3} \mathbf{W}_{3} \mathbf{V}_{3}^{\mathrm{T}}=\mathbf{U}_{3}\left(\mathbf{W}_{3} \mathbf{V}_{3}^{\mathrm{T}}\right)=\mathbf{M} \mathbf{S}$ [Eq. 12]

Factorizing the Measurement Matrix

$$
\mathbf{D}=\mathbf{U}_{3} \mathbf{W}_{3} \mathbf{V}_{3}^{\mathrm{T}}=\mathbf{U}_{3}\left(\mathbf{W}_{3} \mathbf{V}_{3}^{\mathrm{T}}\right)=\mathbf{M} \mathbf{S} \text { [Eq. 12] }
$$

What is the issue here?
D has rank>3 because of:

- measurement noise
- affine approximation

Theorem: When \mathbf{D} has a rank greater than $3, \mathbf{U}_{3} \mathbf{W}_{3} \mathbf{V}_{3}^{T}$ is the best possible rank- 3 approximation of \mathbf{D} in the sense of the Frobenius norm.

$$
\mathbf{D}=\mathbf{U}_{3} \mathbf{W}_{3} \mathbf{V}_{3}^{T} \quad\left\{\begin{array}{l}
\mathbf{M} \approx \mathbf{U}_{3} \\
\mathbf{S} \approx \mathbf{W}_{3} \mathbf{V}_{3}^{T}
\end{array}\right.
$$

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}}
$$

Reconstruction results

120
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Results

Figure 6.20: Four out of the 240 frames of the cup image stream.

Figure 6.23: A front view of the cup and fingers, with the original image intensities mapped onto the resulting surface.

Figure 6.24: A view from above of the cup and fingers with image intensities mapped onto the surface.

Affine Ambiguity

Affine Ambiguity

- The decomposition is not unique. We get the same \mathbf{D} by applying the transformations:

$$
\begin{aligned}
& \mathbf{M}^{*}=\mathbf{M} \mathbf{H} \\
& \mathbf{S}^{*}=\mathrm{H}^{-1} \mathbf{S}
\end{aligned}
$$

where \mathbf{H} is an arbitrary 3×3 matrix describing an affine transformation

- Additional constraints must be enforced to resolve this ambiguity

Affine Ambiguity

The Affine Structure-from-Motion Problem

Given m images of n fixed points X_{i} we can write

Problem: estimate m matrices A_{i}, m matrices b_{i} and the n positions \mathbf{X}_{i} from the $\mathrm{m} \times \mathrm{n}$ observations \mathbf{X}_{ij}.

How many equations and how many unknown?
$2 m \times n$ equations in $8 m+3 n-8$ unknowns

Similarity Ambiguity

- The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)
- This is called metric reconstruction

- The ambiguity exists even for (intrinsically) calibrated cameras
- For calibrated cameras, the similarity ambiguity is the only ambiguity

Similarity Ambiguity

- It is impossible, based on the images alone, to estimate the absolute scale of the scene

Resolving the similarity ambiguity

While calibrating a camera, we make assumptions about the geometry of the world

Lecture 7

Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

Structure from motion problem

From the $m \times n$ observations $\mathbf{x}_{i j}$, estimate:

- m projection matrices $\mathbf{M}_{i}=$ motion
- n 3D points $\mathbf{X}_{j}=$ structure

Structure from motion problem

m cameras $\mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}$

$$
M_{i}=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & 1
\end{array}\right]
$$

Structure from Motion Ambiguities

$$
\begin{aligned}
& \begin{aligned}
\left.\mathrm{x}_{\mathrm{j}}=\begin{array}{ll}
\mathrm{M} & \mathrm{M}_{\mathrm{i}} \\
=\mathrm{HX}_{\mathrm{i}} & \mathrm{M}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}} \\
\mathrm{H}_{\mathrm{i}}
\end{array}\right]
\end{aligned} \\
& \mathrm{x}_{\mathrm{j}}=\mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}=\left(\mathrm{M}_{\mathrm{i}} \mathrm{H}^{-1}\right)\left(\mathrm{H} \mathrm{X}_{\mathrm{j}}\right)
\end{aligned}
$$

The Structure-from-Motion Problem

Given m images of n fixed points X_{j} we can write

Problem: estimate $m 3 \times 4$ matrices M_{i} and n positions X_{i} from $m \times n$ obvesrvations $x_{i j}$.

- If the cameras are not calibrated, cameras and points can only be recovered up to a 4×4 projective (where the 4×4 projective is defined up to scale)
- Given two cameras, how many points are needed?
- How many equations and how many unknown?
$2 \mathrm{~m} \times \mathrm{n}$ equations in $11 \mathrm{~m}+3 \mathrm{n}-15$ unknowns

Projective Ambiguity

Metric reconstruction (upgrade)

- The problem of recovering the metric reconstruction from the perspective one is called self-calibration

Structure-from-Motion methods

1. Recovering structure and motion up to perspective ambiguity

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

2. Resolving the perspective ambiguity

Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D

Algebraic approach (2-view case)

$$
\begin{aligned}
& x_{1 j}=M_{1} X_{j} \\
& x_{2 j}=M_{2} X_{j} \\
& \text { For } \mathrm{i}=1, \underset{\text { N. of points }}{1 . \pi}
\end{aligned}
$$

From at least 8 point correspondences, compute F associated to camera 1 and 2

Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D

Algebraic approach (2-view case)

$$
\begin{aligned}
& x_{1 j}=M_{1} X_{j} \\
& x_{2 j}=M_{2} X_{j} \\
& \text { For } \mathrm{i}=\underset{\substack{1, \ldots \cdot n \\
\text { N. of points }}}{ }
\end{aligned}
$$

Because of the projective ambiguity, we can always apply a projective transformation H such that:

$$
\underset{\left[\begin{array}{ll}
\mathrm{M}_{1} \mathrm{H}^{-1} & \text { 3] }
\end{array}\right]}{=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right]} \begin{aligned}
& \text { Canonical perspective } \\
& \text { cameral }
\end{aligned} \quad \mathrm{M}_{2} \mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~b}
\end{array}\right]
$$

Algebraic approach (2-view case)

- Call X a generic 3D point \mathbf{X}_{ij}
- Call \mathbf{x} and \mathbf{x}^{\prime} the corresponding observations to camera 1 and respectively

$$
\begin{aligned}
& \mathbf{x}^{\prime} \times \mathbf{b}=(\mathbf{A x}+\mathbf{b}) \times \mathbf{b}=\mathbf{A} \mathbf{x} \times \mathbf{b} \\
& \text { [Eq. 8] } \\
& \mathbf{x}^{\prime T} \cdot\left(\mathbf{x}^{\prime} \times \mathbf{b}\right)=\mathbf{x}^{\prime T} \cdot(\mathbf{A} \mathbf{x} \times \mathbf{b})=0 \\
& \text { [Eq. 9] } \\
& \mathbf{x}^{\prime T}(\mathbf{b} \times \mathbf{A} \mathbf{x})=0 \quad[\text { Eq. 10] }
\end{aligned}
$$

Cross product as matrix multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{\times}\right] \mathbf{b}
$$

Algebraic approach (2-view case)

$$
\stackrel{\sim}{\sim}\left(\begin{array} { l l }
{ \tilde { M } _ { 1 } = M _ { 1 } H ^ { - 1 } = [\begin{array} { l l }
{ I } & { 0 }
\end{array}] } & { \mathbf { x } = M _ { 1 } H ^ { - 1 } H \mathbf { X } = [\mathbf { I } | \mathbf { 0 }] \widetilde { \mathbf { X } } } \tag{Eq.6}\\
{ \stackrel { \stackrel { \dot { \sim } } { \sim } } { \sim } }
\end{array} \left\{\begin{array}{ll}
\tilde{M}_{2}=M_{2} H^{-1}=\left[\begin{array}{ll}
A & b
\end{array}\right] & \mathbf{x}^{\prime}=M_{2} H^{-1} H \mathbf{X}=[\mathbf{A} \mid \mathbf{b}] \widetilde{\mathbf{X}} \\
\widetilde{\mathbf{X}}=\mathrm{H} \mathbf{X} &
\end{array}\right.\right.
$$

$\mathbf{x}^{\prime T}(\mathbf{b} \times \mathbf{A} \mathbf{x})=0 \quad[\mathrm{Eq}$. 10]
$\mathbf{x}^{\prime \prime}\left[\mathbf{b}_{\times}\right] \mathbf{A} \mathbf{x}=0 \quad$ is this familiar? $\quad \mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A}$
fundamental matrix!

Compute cameras

$$
\mathbf{x}^{\prime \mathrm{T}} \mathrm{~F}=0 \quad \mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A}=\mathbf{b} \times \mathbf{A} \quad[\mathrm{Eq} .11]
$$

Compute b:

- Let's consider the product $\mathbf{F} \mathbf{b}$

$$
\mathbf{F} \cdot \mathbf{b}=\left[\mathbf{b}_{\times}\right] \mathbf{A} \cdot \mathbf{b}=\mathbf{b} \times \mathbf{A} \cdot \mathbf{b}=0[\mathrm{Eq} .12]
$$

- Since \mathbf{F} is singular, we can compute \mathbf{b} as least sq. solution of $\mathbf{F} \mathbf{b}=0$, with $|\mathbf{b}|=1$ using SVD
- Using a similar derivation, we have that $\mathbf{b}^{\top} \mathbf{F}=0$ [Eq. 12-bis]

Compute cameras

$$
\mathbf{x}^{\mathbf{x}^{\mathrm{T}} \mathrm{~F} \mathbf{x}=0} \quad \begin{gathered}
\mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A} \\
{[\mathrm{Eq} .11]}
\end{gathered} \quad\left\{\begin{array}{l}
\mathbf{F} \mathbf{b}=0[\mathrm{Eq} .12] \\
\mathbf{b}^{\mathrm{T}} \mathbf{F}=0[\mathrm{Eq} .12 \text {-bis }]
\end{array}\right.
$$

Compute A:

- Define: $\mathbf{A}^{\prime}=-\left[\mathbf{b}_{\mathbf{x}}\right] \mathbf{F}$
- Let's verify that $\left[\mathbf{b}_{x}\right] \mathbf{A}^{\prime}$ is equal to \mathbf{F} :

Indeed: $\left[\mathbf{b}_{\times}\right] \mathbf{A}^{\prime}=-\left[\mathbf{b}_{\mathbf{x}}\right]\left[\mathbf{b}_{\mathbf{x}}\right] \mathbf{F}=-\left(\mathbf{b} \mathbf{b}^{T}-|\mathbf{b}|^{2} \mathbf{I}\right) \mathbf{F}=-\mathbf{b} \mathbf{b}^{T} \mathbf{F}+|\mathbf{b}|^{2} \mathbf{F}=0+1 \cdot \mathbf{F}=\mathbf{F}$

- Thus, $\mathbf{A}=\mathbf{A}^{\prime}=-\left[\mathbf{b}_{\mathrm{x}}\right] \mathbf{F}$
[Eq. 13]
[Eqs. 14] $\quad \tilde{M}_{1}=\left[\begin{array}{ll}I & 0\end{array}\right] \quad \tilde{M}_{2}=\left[\begin{array}{ll}-\left[\mathbf{b}_{x}\right] \mathbf{F} & \mathbf{b}\end{array}\right]$

Interpretation of \mathbf{b}

$$
\mathbf{x}^{\prime \mathrm{T}} \mathrm{~F} \mathbf{x}=0 \quad \underset{[\mathrm{Eq} .11]}{=\left[\mathbf{b}_{\times}\right] \mathbf{A}}
$$

What's b??

Epipolar Constraint [lecture 5]

$F x_{2}$ is the epipolar line associated with $x_{2}\left(I_{1}=F x_{2}\right)$
$F^{\top} x_{1}$ is the epipolar line associated with $x_{1}\left(I_{2}=F^{\top} x_{1}\right)$
F is singular (rank two)
$F e_{2}=0$ and $F^{\top} e_{1}=0$
F is 3×3 matrix; 7 DOF

Interpretation of \mathbf{b}

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0 \quad \mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A} \quad\left[\begin{array} { l }
{ [\mathrm { Eq } . 1 1] }
\end{array} \quad \left\{\begin{array}{l}
\mathbf{F} \mathbf{b}=0 \\
\mathbf{b}^{\mathrm{T}} \mathbf{F}=0
\end{array}\right.\right.
$$

b is an epipole!

$$
\left.\begin{array}{cc}
\tilde{M}_{1}=\left[\begin{array}{ll}
I & 0
\end{array}\right] & \tilde{M}_{2}=\left[\begin{array}{cc}
-\left[\mathbf{b}_{x}\right] \mathbf{F} & \mathbf{b}
\end{array}\right] \\
\boldsymbol{\Downarrow} & \\
\tilde{M}_{1}=\left[\begin{array}{ll}
I & 0
\end{array}\right] & \tilde{M}_{2}=\left[\begin{array}{cc}
-\left[\begin{array}{ll}
\left.\mathbf{e}_{x}\right]
\end{array}\right] \mathbf{F} & \mathbf{e}
\end{array}\right] \\
{[\mathrm{Eq.} \text {. 16] }]}
\end{array}\right]
$$

HZ, page 254
PF, page 288

Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D

Triangulation

$$
\begin{aligned}
& x_{1 j}=\tilde{M}_{2} \tilde{\mathbf{X}}_{j} \\
& x_{2 j}=\tilde{M}_{1} \tilde{\mathbf{X}}_{j}
\end{aligned}
$$

$$
\tilde{M}_{1}=\left[\begin{array}{ll}
I & 0
\end{array}\right] \rightarrow \quad \rightarrow \quad \tilde{\mathbf{X}}_{j} \text { For } \mathrm{i}=1, \ldots, \mathrm{n}
$$

3D points can be computed from camera matrices via SVD (see page 312 of HZ for details)

Algebraic approach: the N -views case

- Pairwise solutions may be combined together using bundle adjustment

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Limitations of the approaches so far

- Factorization methods assume all points are visible. This not true if:
- occlusions occur
- failure in establishing correspondences
- Algebraic methods work with 2 views

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizes re-projection error

$$
\mathrm{E}(\mathrm{M}, \mathbf{X})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{D}\left(\mathbf{x}_{\mathrm{ij}}, \mathrm{M}_{\mathrm{i}} \mathbf{X}_{\mathrm{j}}\right)^{2}
$$

General Calibration Problem

$$
\mathrm{E}(\mathrm{M}, \mathbf{X})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{D}\left(\mathbf{x}_{\mathrm{ij}}, \mathrm{M}_{\mathrm{i}} \mathbf{X}_{\mathrm{j}}\right)^{2}
$$

D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm
- Iterative, starts from initial solution
- May be slow if initial solution far from real solution
- Estimated solution may be function of the initial solution
- Newton requires the computation of J, H
- Levenberg-Marquardt doesn't require the computation of H

Bundle adjustment

- Advantages
- Handle large number of views
- Handle missing data
- Limitations
- Large minimization problem (parameters grow with number of views)
- Requires good initial condition
- Used as the final step of SFM (i.e., after the factorization or algebraic approach)
- Factorization or algebraic approaches provide a initial solution for optimization problem

Lecture 7
 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

Self-calibration

- Self-calibration is the problem of recovering the metric reconstruction from the perspective (or affine) reconstruction
- We can self-calibrate the camera by making some assumptions about the cameras

Self-calibration

[HZ] Chapters 19 "Auto-calibration"

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

Inject information about the camera during the bundle adjustment optimization

For calibrated cameras, the similarity ambiguity is the only ambiguity [longuelHiggins'81]

Lecture 7
 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration
- Applications

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Lucas \& Kanade, 81
Chen \& Medioni, 92 Debevec et al., 96 Levoy \& Hanrahan, 96 Fitzgibbon \& Zisserman, 98
Triggs et al., 99 Pollefeys et al., 99
Kutulakos \& Seitz, 99

Levoy et al., 00
Hartley \& Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04
Brown \& Lowe, 04
Schindler et al, 04
Lourakis \& Argyros, 04
Colombo et al. 05

Golparvar-Fard, et al. JAEI
10
Pandey et al. IFAC , 2010
Pandey et al. ICRA 2011
Microsoft's PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10

Reconstruction and texture mapping

M. Pollefeys et al 98-

Incremental reconstruction of construction sites

Initial pair - 2168 \& Complete Set 62,323 points, 160 images
Golparvar-Fard. Pena-Mora, Savarese 2008

Reconstructed scene + Site photos

ㅍ. D4AR System | Visualization of Construction Progress | University of Illinois, Urbana-Champaign

Reconstructed scene + Site photos

Results and applications

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," ACM N Pho Transactions on Graphics (SIGGRAPH Proceedings),2006,

Next lecture

- Fitting and Matching

Appendix

Direct approach

We use the following results:

1. A relationship that maps conics across views
2. Concept of absolute conic and its relationship to K
3. The Kruppa equations

Projections of conics across views

Projection of absolute conics across views
From lecture 4, [HZ] page 210, sec. 8.5.1

Kruppa equations

$$
\left(\begin{array}{c}
u_{2}^{T} K^{\prime} K^{\prime T} u_{2} \\
-u_{1}^{T} K^{\prime} K^{\prime T} u_{2} \\
u_{1}^{T} K^{\prime} K^{\prime T} u_{1}
\end{array}\right) \times\left(\begin{array}{c}
\sigma_{1}^{2} v_{1}^{T} K K^{T} v_{1} \\
\sigma_{1} \sigma_{2} v_{1}^{T} K K^{T} v_{2} \\
\sigma_{2}^{2} v_{2}^{T} K K^{T} v_{2}
\end{array}\right)=0 \quad \text { [Eq. 6] }
$$

where u_{i}, v_{i} and σ_{i} are the columns and singular values of SVD of F

These give us two independent constraints in the elements of K and K^{\prime}

Kruppa equations

$$
\begin{align*}
& \left(\begin{array}{c}
u_{2}^{T} K^{\prime} K^{\prime T} u_{2} \\
-u_{1}^{T} K^{\prime} K^{\prime T} u_{2} \\
u_{1}^{T} K^{\prime} K^{\prime T} u_{1}
\end{array}\right) \times\left(\begin{array}{c}
\sigma_{1}^{2} v_{1}^{T} K K^{T} v_{1} \\
\sigma_{1} \sigma_{2} v_{1}^{T} K K^{T} v_{2} \\
\sigma_{2}^{2} v_{2}^{T} K K^{T} v_{2}
\end{array}\right)=0 \\
& \frac{u_{2}^{T} K K^{T} u_{2}}{\sigma_{1}^{2} v_{1}^{T} K K^{T} v_{1}}=\frac{-u_{1}^{T} K K^{T} u_{2}}{\sigma_{1} \sigma_{2} v_{1}^{T} K K^{T} v_{2}}=\frac{u_{1}^{T} K K^{T} u_{1}}{\sigma_{2}^{2} v_{2}^{T} K K^{T} v_{2}} \tag{Eq.7}
\end{align*}
$$

- Let's make the following assumption: $K^{\prime}=K=\left(\begin{array}{ccc}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1\end{array}\right)$ [Eq. 8]
[Eq. 9] $\alpha f^{2}+\beta f+\gamma=0 \longrightarrow f$

Kruppa equations

- Powerful if we want to self-calibrate 2 cameras with unknown focal length
- Limitations:
- Work on a camera pair
- Don't work if R=0

$$
\begin{gathered}
\text { [Eq. 10] }\left[e^{\prime}\right]_{\times} \omega^{-1}\left[e^{\prime}\right]_{\times}=F \omega^{-1} F^{T} \text { becomes trivial } \\
\text { Since: } F=\left[e^{\prime}\right]_{\times}
\end{gathered}
$$

Self-calibration

[HZ] Chapters 19 "Auto-calibration"

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

Auto Calibration

- Auto-calibration is the process of determining internal camera parameters directly from multiple uncalibrated images.
- Once this is done, it is possible to compute a metric reconstruction from the images.
- Auto-calibration avoids the onerous task of calibrating cameras using special calibration objects.
- This gives great flexibility since, for example, a camera can be calibrated directly from an image sequence despite unknown motion and changes in some of the internal parameters.

Algebraic Frame work for Auto-calibration

- Suppose we have a set of images acquired by a camera with fixed internal parameters, and that a projective reconstruction is computed from point correspondences across the image set.
- The reconstruction computes a projective camera matrix Pi for each view. Our constraint is that for the actual cameras the internal parameter matrix K is the same (but unknown) for each view.
- Now, each camera Pi of the projective reconstruction may be decomposed as $\mathrm{Pi}=\mathrm{Ki}[\mathrm{Ri} / \mathrm{t} \boldsymbol{\mathrm { i }}]$ but in general the calibration matrix Ki will differ for each view.
- Thus the constraint will not be satisfied by the projective reconstruction.

Algebraic Framework

- However, we have the freedom to vary our projective reconstruction by transforming the camera matrices by a homography H .
- Since the actual cameras have fixed internal parameters, there will exist a homography (or a family of homographies) such that the transformed cameras PiH do decompose as PiH $=$ KRi[I/ti], with the same calibration matrix for each camera, so the reconstruction is consistent with the constraint.
- Provided there are sufficiently many views and the motion between the views is general, then this consistency constrains H to the extent that the reconstruction transformed by H is within a similarity transformation of the actual cameras and scene, i.e. we achieve a metric reconstruction.

General approach

(i) Obtain a projective reconstruction $\left\{\mathrm{P}^{i}, \mathbf{X}_{j}\right\}$.
(ii) Determine a rectifying homography H from auto-calibration constraints, and transform to a metric reconstruction $\left\{\mathrm{P}^{i} \mathrm{H}, \mathrm{H}^{-1} \mathbf{X}_{j}\right\}$.

Suppose we have a projective reconstruction $\left\{\mathrm{P}^{i}, \mathrm{X}_{j}\right\}$; then based on constraints on the cameras' internal parameters or motion we wish to determine a rectifying homography H such that $\left\{\mathrm{P}^{i} \mathrm{H}, \mathrm{H}^{-1} \mathbf{X}_{j}\right\}$ is a metric reconstruction.

Our goal is to find H

Result

Result 19.1. A projective reconstruction $\left\{\mathrm{P}^{i}, \mathrm{X}_{j}\right\}$ in which $\mathrm{P}^{1}=[\mathrm{I} \mid 0]$ can be transformed to a metric reconstruction $\left\{\mathrm{P}^{i} \mathrm{H}, \mathrm{H}^{-1} \mathbf{X}_{j}\right\}$ by a matrix H of the form

$$
\mathrm{H}=\left[\begin{array}{cc}
\mathrm{K} & 0 \tag{19.2}\\
-\mathbf{p}^{\top} \mathrm{K} & 1
\end{array}\right]
$$

where K is an upper triangular matrix. Furthermore,
(i) $\mathrm{K}=\mathrm{K}^{1}$ is the calibration matrix of the first camera.
(ii) The coordinates of the plane at infinity in the projective reconstruction are given by $\boldsymbol{\pi}_{\infty}=\left(\mathbf{p}^{\top}, 1\right)^{\top}$.

Conversely, if the plane at infinity in the projective frame and the calibration matrix of the first camera are known, then the transformation H that converts the projective to a metric reconstruction is given by (19.2).

Suppose that all the cameras have the same internal parameters, so $\mathrm{K}^{i}=\mathrm{K}$, then (19.4) becomes

$$
\begin{equation*}
\mathrm{KK}^{\top}=\left(\mathrm{A}^{i}-\mathbf{a}^{i} \mathbf{p}^{\top}\right) \mathrm{KK}^{\top}\left(\mathrm{A}^{i}-\mathbf{a}^{i} \mathbf{p}^{\top}\right)^{\top} \quad i=2, \ldots, m \tag{19.5}
\end{equation*}
$$

Each view $i=2, \ldots, m$ provides an equation, and we can develop a counting argument for the number of views required (in principle) in order to be able to determine the 8 unknowns. Each view other than the first imposes 5 constraints since each side is a 3×3 symmetric matrix (i.e. 6 independent elements) and the equation is homogeneous. Assuming these constraints are independent for each view, a solution is determined provided $5(m-1) \geq 8$. Consequently, provided $m \geq 3$ a solution is obtained, at least in principle. Clearly, if m is much larger than 3 the unknowns K and p are very over-determined.

Algebraic approach multi-view approach

Suppose we have a projective reconstruction $\left\{\tilde{M}_{i}, \tilde{X}_{j}\right\}$
Let H be a homography such that:
$\left\{\begin{array}{l}\text { First perspective camera is canonical: } \tilde{M}_{1}=\left[\begin{array}{cc}I & 0\end{array}\right]\left[\begin{array}{ll}\text { Eq. } & 11\end{array}\right] \\ \text { ith perspective reconstruction of the camera (known): } \tilde{\mathrm{M}}_{\mathrm{i}}=\left[\begin{array}{lll}\mathrm{A}_{\mathrm{i}} & \mathrm{b}_{\mathrm{i}}\end{array}\right]\end{array}\right.$
[Eq. 12]
[Eq. 13] $\left(A_{i}-b_{i} p^{T}\right) K_{1} K_{1}^{T}\left(A_{i}-b_{i} p^{T}\right)^{T}=K_{i} K_{i}^{T} \quad$ i=2...m
[Eq. 14] $H=\left[\begin{array}{cc}K_{1} & 0 \\ -p^{T} K_{1} & 1\end{array}\right]$
p is an unknown 3×1 vector $\mathrm{K}_{1} \ldots \mathrm{~K}_{\mathrm{m}}$ are unknown

Algebraic approach Multi-view approach

Suppose we have a projective reconstruction
Let H be a homography such that:
$\left\{\begin{array}{l}\text { First perspective camera is canonical: } \tilde{M}_{1}=\left[\begin{array}{cc}I & 0\end{array}\right]\left[\begin{array}{ll}\text { Eq. 11] }\end{array}\right] \\ \text { ith perspective reconstruction of the camera (known): } \tilde{\mathrm{M}}_{\mathrm{i}}=\left[\begin{array}{lll}\mathrm{A}_{\mathrm{i}} & \mathrm{b}_{\mathrm{i}}\end{array}\right]\end{array}\right.$
[Eq. 12]
[Eq. 13] $\left(A_{i}-b_{i} p^{T}\right) K_{1} K_{1}^{T}\left(A_{i}-b_{i} p^{T}\right)^{T}=K_{i} K_{i}^{T} \quad$ i=2...m
How many unknowns?

- 3 from p
- 5 m from $\mathrm{K}_{1} \ldots \mathrm{~K}_{\mathrm{m}}$

How many equations? 5 independent equations [per view]

Algebraic approach multi-view approach

Suppose we have a projective reconstruction
Let H be a homography such that:
$\left\{\begin{array}{l}\text { First perspective camera is canonical: } \tilde{M}_{1}=\left[\begin{array}{cc}I & 0\end{array}\right]\left[\begin{array}{ll}\text { Eq. } & 11\end{array}\right] \\ \text { ith }\end{array}\right.$
[Eq. 12]
Assume all camera matrices are identical: $\mathrm{K}_{1}=\mathrm{K}_{2} \ldots=\mathrm{K}_{\mathrm{m}}$
[Eq. 15] $\quad\left(A_{i}-b_{i} p^{T}\right) K K^{T}\left(A_{i}-b_{i} p^{T}\right)^{T}=K \quad K^{T} \quad$ i=2...m
How many unknowns?

- 3 from p
- 5 from K

How many equations? 5 independent equations [per view]
We need at least 3 views to solve the self-calibration problem

Algebraic approach

Art of self-calibration:

Use assumptions on Ks to generate enough equations on the unknowns

Condition	N. Views
- Constant internal parameters	3
- Aspect ratio and skew known - Focal length and offset vary	4
- Skew $=0$, all other parameters vary	8

Issue: the larger is the number of view, the harder is the correspondence problem

Bundle adjustment helps!

SFM problem - summary

1. Estimate structure and motion up perspective transformation
2. Algebraic
3. factorization method
4. bundle adjustment
5. Convert from perspective to metric (self-calibration)
6. Bundle adjustment
** or **
7. Bundle adjustment with self-calibration constraints
