
1

Introduction to Kalman Filters

2

Overview

• The Problem – Why do we need Kalman
Filters?

• What is a Kalman Filter?

• Conceptual Overview

• The Theory of Kalman Filter

• Simple Example

3

The Problem

• System state cannot be measured directly

• Need to estimate “optimally” from measurements

Measuring
Devices Estimator

Measurement
Error Sources

System State
(desired but not
known)

External Controls

Observed
Measurements

Optimal Estimate
of System State

System
Error Sources

System

Black Box

4

What is a Kalman Filter?
• Recursive data processing algorithm

• Generates optimal estimate of desired quantities
given the set of measurements

• Optimal?

– For linear system and white Gaussian errors, Kalman filter
is “best” estimate based on all previous measurements

– For non-linear system optimality is ‘qualified’

• Recursive?

– Doesn’t need to store all previous measurements and
reprocess all data each time step

5

Conceptual Overview

• Simple example to motivate the workings of
the Kalman Filter

• Theoretical Justification to come later – for
now just focus on the concept

• Important: Prediction and Correction

6

Conceptual Overview

• Lost on the 1-dimensional line

• Position – y(t)

• Assume Gaussian distributed measurements

y

7

Conceptual Overview

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

• Sextant Measurement at t1: Mean = z1 and Variance = z1

• Optimal estimate of position is: ŷ(t1) = z1

• Variance of error in estimate: 2
x (t1) = 2

z1

• Boat in same position at time t2 - Predicted position is z1

8

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Conceptual Overview

• So we have the prediction ŷ-(t2)

• GPS Measurement at t2: Mean = z2 and Variance = z2

• Need to correct the prediction due to measurement to get ŷ(t2)

• Closer to more trusted measurement – linear interpolation?

prediction ŷ-(t2)
measurement z(t2)

9

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Conceptual Overview

• Corrected mean is the new optimal estimate of position

• New variance is smaller than either of the previous two variances

measurement z(t2)

corrected optimal
estimate ŷ(t2)

prediction ŷ-(t2)

10

Conceptual Overview

• Lessons so far:

Make prediction based on previous data - ŷ-, -

Take measurement – zk, z

Optimal estimate (ŷ) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1 – Kalman Gain)

11

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Conceptual Overview

• At time t3, boat moves with velocity dy/dt=u

• Naïve approach: Shift probability to the right to predict

• This would work if we knew the velocity exactly (perfect model)

ŷ(t2)
Naïve Prediction ŷ-

(t3)

12

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Conceptual Overview

• Better to assume imperfect model by adding Gaussian noise

• dy/dt = u + w

• Distribution for prediction moves and spreads out

ŷ(t2)

Naïve Prediction ŷ-

(t3)

Prediction ŷ-(t3)

13

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Conceptual Overview

• Now we take a measurement at t3

• Need to once again correct the prediction

• Same as before

Prediction ŷ-(t3)

Measurement z(t3)

Corrected optimal estimate ŷ(t3)

14

Conceptual Overview

• Lessons learnt from conceptual overview:
– Initial conditions (ŷk-1 and k-1)

– Prediction (ŷ-
k , 

-
k)

• Use initial conditions and model (eg. constant velocity) to make
prediction

– Measurement (zk)
• Take measurement

– Correction (ŷk , k)
• Use measurement to correct prediction by ‘blending’ prediction

and residual – always a case of merging only two Gaussians

• Optimal estimate with smaller variance

Kalman Filter Model

Area under the
curve sums to 1

𝜇

Gaussian

(in 1𝐷 for now)

σ2

Measurement Example
Prior Position Estimate (𝜇, 𝜎2)
Measurement Estimate (𝜈, 𝑟2)

μ, σ2

v, r2

Measurement Example
Prior Position Estimate (𝜇, 𝜎2)
Measurement Estimate (𝜈, 𝑟2)

Where is the new mean 𝜇′?

μ, σ2

v, r2

Measurement Example
Prior Position Estimate (𝜇, 𝜎2)
Measurement Estimate (𝜈, 𝑟2)

What is the new covariance 𝜎2′?

μ, σ2

v, r2

What is the new estimate?

Prior Position Estimate (𝜇, 𝜎2)
Measurement Estimate (𝜈, 𝑟2)
New Estimate (𝜇′, 𝜎2′)

μ, σ2

v, r2

μ', σ2’

: p(x)
: p(z|x)
: p(x|z)

To calculate, go through and multiply the two Gaussians and renormalize to
sum to 1
Also, the multiplication of two Gaussian random variables is itself a Gaussian

Example
Prior Position Estimate (10,4)
Measurement Estimate (12, 4)

Example
Prior Position Estimate (10,4)
Measurement Estimate (12, 4)

Example
Prior Position Estimate (10,8)
Measurement Estimate (13, 2)

μ’=12.4
σ2’=1.6

Kalman Filter

SenseSense MoveMove

Initial BeliefInitial Belief

Lose
Information

Convolution
(Addition)

Gaussian:
μ, σ2

Motion Update

• For motion

Model of motion noise

μ’=μ+u

σ2’=σ2+r2

u, r2

Motion Update

• For motion

Model of motion noise

μ’=μ+u

σ2’=σ2+r2

u, r2

Prior Position Estimate (8,4)

Movement Estimate (10, 6)

Motion Update

• For motion

Model of motion noise

μ’=μ+u=18

σ2’=σ2+r2=10

u, r2

Prior Position Estimate (8,4)

Movement Estimate (10, 6)

Kalman Filter

SenseSense MoveMove

Initial BeliefInitial Belief

Gaussian:
μ, σ2

μ’=μ+u=18
σ2’=σ2+r2=10

28

Theoretical Basis
• Process to be estimated:

yk = Ayk-1 + Buk + wk-1

zk = Hyk + vk

Process Noise (w) with covariance Q

Measurement Noise (v) with covariance R

• Kalman Filter
Predicted: ŷ-

k is estimate based on measurements at previous time-steps

ŷk = ŷ-
k + K(zk - H ŷ-

k)

Corrected: ŷk has additional information – the measurement at time k

K = P-
kH

T(HP-
kH

T + R)-1

ŷ-
k = Ayk-1 + Buk

P-
k = APk-1AT + Q

Pk = (I - KH)P-
k

29

Blending Factor

• If we are sure about measurements:

– Measurement error covariance (R) decreases to zero

– K incarease and weights residual(measurement) more heavily

than prediction

• If we are sure about prediction

– Prediction error covariance P-
k decreases to zero

– K decreases and weights prediction more heavily than residual

30

Theoretical Basis

ŷ-
k = Ayk-1 + Buk

P-
k = APk-1AT + Q

Prediction (Time Update)

(1) Project the state ahead

(2) Project the error covariance ahead

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update estimate with measurement zk

(3) Update Error Covariance

ŷk = ŷ-
k + K(zk - H ŷ-

k)

K = P-
kH

T(HP-
kH

T + R)-1

Pk = (I - KH)P-
k

31

Quick Example – Constant Model

Measuring
Devices Estimator

Measurement
Error Sources

System State

External Controls

Observed
Measurements

Optimal Estimate
of System State

System
Error Sources

System

Black Box

32

Quick Example – Constant Model

Prediction

ŷk = ŷ-
k + K(zk - H ŷ-

k)

Correction

K = P-
k(P

-
k + R)-1

ŷ-
k = yk-1

P-
k = Pk-1

Pk = (I - K)P-
k

33

Quick Example – Constant Model

0 10 20 30 40 50 60 70 80 90 100
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

34

Quick Example – Constant Model

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence of Error Covariance - Pk

35

0 10 20 30 40 50 60 70 80 90 100
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Quick Example – Constant Model

Larger value of R – the measurement error
covariance (indicates poorer quality of
measurements)

Filter slower to ‘believe’ measurements –
slower convergence

SLAM

• Simultaneous localization and mapping:
Is it possible for a mobile robot to be placed at an
unknown location in an unknown environment and for
the robot to incrementally build a consistent map of this
environment while simultaneously determining its
location within this map?

http://flic.kr/p/9jdHrL

Three Basic Steps

• The robot moves

– increases the uncertainty on robot pose

– need a mathematical model for the motion

– called motion model

Three Basic Steps

• The robot discovers interesting features in the
environment

– called landmarks

– uncertainty in the location of landmarks

– need a mathematical model to determine the
position of the landmarks from sensor data

– called inverse observation model

Three Basic Steps

• The robot observes previously mapped
landmarks

– uses them to correct both self localization and the
localization of all landmarks in space

– uncertainties decrease

– need a model to predict the measurement from
predicted landmark location and robot localization

– called direct observation model

How to do SLAM

How to do SLAM

How to do SLAM

How to do SLAM

How to do SLAM

How to do SLAM

How to do SLAM

How to do SLAM

How to do SLAM

The Essential SLAM Problem

SLAM – Multiple parts

• Landmark extraction

• data association

• State estimation

• state update

• landmark update

There are many ways to solve each of

the smaller parts

Hardware

• Mobile Robot

• Range Measurement Device

• Laser scanner – CANNOT be used underwater

• Sonar – NOT accurate

• Vision – Cannot be used in a room with NO light

The goal of the process

The SLAM process consists of number of steps.

o Use environment to update the position of the robot. Since the odometry of the
robot is often erroneous we cannot rely directly on the odometry.

o We can use laser scans of the environment to correct the position of the robot.

o This is accomplished by extracting features from the environment and re observing
when the robot moves around.

Extended Kalman Filter

An EKF (Extended Kalman Filter) is the heart of the SLAM process.

o It is responsible for updating where the robot thinks it is based on the
Landmarks (features).

o The EKF keeps track of an estimate of the uncertainty in the robots
position and also the uncertainty in these landmarks it has seen in the
environment.

Overview

Laser Scans

Odometry Change

EKF New
Observations

EKF Re-observation

EKF Odometry update

Data Association

Landmark Extraction

Laser & Odometry data

• Laser data is the reading obtained from the
scan

• The goal of the odometry data is to provide an
approximate position of the robot

Landmarks

• Landmarks are features which can easily be re-
observed and distinguished from the
environment.

• These are used by the robot to find out where
it is (to localize itself).

The key points about suitable Landmarks

o Landmarks should be easily re-observable.

o Individual landmarks should be
distinguishable from each other.

o Landmarks should be plentiful in the
environment.

o Landmarks should be stationary.

In an indoor environment such as that used by our robot there are
many straight lines and well defined corners. These could all be used
as landmarks.

Landmark Extraction

• Once we have decided on what landmarks a
robot should utilize we need to be able to
somehow reliably extract them from the
robots sensory inputs.

• The 2 basic Landmark Extraction Algorithms
used are Spikes and RANSAC

RANSAC (Random Sampling Consensus)

• This method can be used to extract lines from a laser scan that can in turn
be used as landmarks.

• RANSAC finds these line landmarks by randomly taking a sample of the
laser readings and then using a least squares approximation to find the
best fit line that runs through these readings.

Consensus

Data Association

• The problem of data association is that of matching observed
landmarks from different (laser) scans with each other.

• Problems in Data Association
– You might not re-observe landmarks every time.

– You might observe something as being a landmark but fail to ever see it again.

– You might wrongly associate a landmark to a previously seen landmark.

Algorithm – Nearest Neighbour Approach

• When you get a new laser scan use landmark extraction to extract all
visible landmarks.

• Associate each extracted landmark to the closest landmark we have
seen more than N times in the database.

• Pass each of these pairs of associations (extracted landmark, landmark
in database) through a validation gate.
– If the pair passes the validation gate it must be the same landmark we have re-observed

so increment the number of times we have seen it in the database.

– If the pair fails the validation gate add this landmark as a new landmark in the database
and set the number of times we have seen it to 1.

Overview of the process

• Update the current state estimate using the
odometry data

• Update the estimated state from re-observing
landmarks.

• Add new landmarks to the current state.

Final Review – Open Areas

• There is the problem of closing the loop. This problem is
concerned with the robot returning to a place it has seen
before. The robot should recognize this and use the new
found information to update the position.

• Furthermore the robot should update the landmarks found
before the robot returned to a known place, propagating
the correction back along the path.

SLAM Paradigms

• Some of the most important approaches to
SLAM:

– Extended Kalman Filter SLAM (EKF SLAM)

– Particle Filter SLAM (FAST SLAM)

– GraphSLAM

EKF Slam

• Keep track of combined state vector at time t:
– x, y, θ
– m1,x, m1,y, s1

– …
– mN,x, mN,y, sN

• m = estimated coordinates of a landmark
• s = sensor’s signature for this landmark

• Very similar to EKF localization, starting at origin

EKF-SLAM

Grey: Robot Pose Estimate
White: Landmark Location Estimate

Visual Slam

• Single Camera

• What’s harder?

• How could it be possible?

GraphSLAM

• SLAM can be interpreted as a sparse graph of nodes
and constraints between nodes.

GraphSLAM

• SLAM can be interpreted as a sparse graph of nodes and
constraints between nodes.

• nodes: robot locations and map-feature locations

• edges: constraints between

▫ consecutive robot poses (given by the odometry input u)

▫ robot poses and the features observed from these poses.

GraphSLAM

• Key property: constraints are not to be thought as rigid constraints but as
soft constraints

▫ Constraints acting like springs

• Solve full SLAM by relaxing these constraints

▫ get the best estimate of the robot path and the environment map by
computing the state of minimal energy of this spring mass network

GraphSLAM

GraphSLAM

GraphSLAM

GraphSLAM

1. Build graph

2. Inference: solve system of linear equations to
get map and path

GraphSLAM

• The update time of the graph is constant.

• The required memory is linear in the number
of features.

• Final graph optimization can become
computationally costly if the robot path is
long.

• Impressing results with even hundred million
features.

SLAM Problem Statement

• Inputs:

– No external coordinate reference

– Time series of proprioceptive and exteroceptive measurements* made as
robot moves through an initially unknown environment

• Outputs:

• –A map* of the environment

• –A robot pose estimate associated with each measurement, in the coordinate
system in which the map is defined

What is a map?

• Collection of features with some
relationship to one another

• What is a feature?

–Occupancy grid cell

– Line segment

–Surface patch

• What is a feature relationship?

–Rigid-body transform (metrical mapping)

–Topological path (chain of co-visibility)

–Semantics (label, function, contents)

Uncertainty

Why is SLAM Hard?

• “Grand challenge”-level robotics problem

–Autonomous, persistent, collaborative robots mapping multi-scale, generic
environments

• Map-making = learning

–Difficult even for humans

–Even skilled humans make mapping mistakes

• Scaling issues

–Space: Large extent (combinatorial growth)

–Time: Persistent autonomous operation

• “Chicken and Egg” nature of problem

– If robot had a map, localization would be easier

– If robot could localize, mapping would be easier

–… But robot has neither; starts from blank slate

–Must also execute an exploration strategy

• Uncertainty at every level of problem

Uncertainty in Robotic Mapping

Uncertainty:

Scale:

Continuous Discrete

Local Sensor
noise

Data
association

Global Navigation
drift

Loop
closing

SICK laser scanner

180 range returns,

one per degree,

at 5-75 Hz

Polaroid sonar ring

12 range returns,

one per 30
degrees, at ~4 Hz

Common range-and-bearing sensors

Other possibilities: Stereo/monocular vision; Robot itself (stall, bump sensing)

Robot

Robot

(+ servoed
rotation)

Tracking & long-baseline monocular vision

Bosse

Track points, edges, texture
patches from frame to frame;
triangulate to recover local 3D
structure. Also called “SFM,”
Structure From camera Motion,
or object motion in the image

Chou

Example

• SLAM with laser scanning

• Observations

• Local mapping

– Iterated closest point

• Loop closing

–Scan matching

–Deferred validation

–Search strategies

Observations

Observations

1.

3.

2.

Scan Matching

• Robot scans, moves, scans again

• Short-term odometry/IMU error
causes misregistration of scans

• Scan matching is the process of
bringing scan data into alignment

Ground truth (unknown)

1
2 1 2

Scan from pose 1 Scan from pose 2

Iterated Closest Point

• Find the transformation that best
aligns the matching sets of points

2
1 2

What happens to the estimate of
the relative vehicle pose between
sensor frames 1 & 2 ?

Limitations / failure modes
• Computational cost (two scans of size n)

– Naively, O(n2) plus cost of alignment step

• False minima

– If ICP starts far from true alignment

– If scans exhibit repeated local structure

• Bias

– Anisotropic point sampling

– Differing sensor fields of view (occlusion)

• Lots of research on improved ICP
methods (see, e.g., Rusinkiewicz)

Loop Closing
• Naive ICP ruled out:

– Too CPU-intensive

• Assume we have a
pose uncertainty bound

• This limits the portion
of the existing map that
must be searched

• Still have to face the
problem of matching
two partial scans that
are far from aligned

Gutman, Konolige

Loop Closing Ambiguity

• Consider SLAM state after ABC … XY
Large open-loop
navigation uncertainty
Y matches both A & B

… What to do?

Deferred Loop Validation
• Continue SLAM until Z matches C

• Examine graph for ~identity cycle

Summary
• SLAM is a hard robotics problem:

– Requires sensor fusion over large areas

– Scaling issues arise quickly with real data

• Key issue is managing uncertainty

– At both low level and high level

– Both continuous and discrete

• Saw several SLAM strategies

– Local and global alignment

– Randomization

– Deferred validation

• SLAM is only part of the solution for most
applications (need names, semantics)

